• Title/Summary/Keyword: Short-Term Prediction

Search Result 629, Processing Time 0.031 seconds

A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA (VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로)

  • Cho, Jung-Hyeong
    • International Commerce and Information Review
    • /
    • v.16 no.3
    • /
    • pp.73-96
    • /
    • 2014
  • The purpose of this research is to evaluate a short-term export demand forecasting model reflecting individual passenger vehicle brands and market characteristics by using Vector Autoregressive (VAR) models that are based on multivariate time-series model. The short-term export demand forecasting model was created by discerning theoretical potential factors that affect the short-term export demand of individual passenger vehicle brands. Quarterly short-term export demand forecasting model for two Korean small vehicle brands (Accent and Avante) were created by using VAR model. Predictive value at t+1 quarter calculated with the forecasting models for each passenger vehicle brand and the actual amount of sales were compared and evaluated by altering subject period by one quarter. As a result, RMSE % of Accent and Avante was 4.3% and 20.0% respectively. They amount to 3.9 days for Accent and 18.4 days for Avante when calculated per daily sales amount. This shows that the short-term export demand forecasting model of this research is highly usable in terms of prediction and consistency.

  • PDF

Study on Nonlinearites of Short Term, Beat-to-beat Variability in Cardiovascular Signals (심혈관 신호에 있어서 단기간 beat-to-beat 변이의 비선형 역할에 관한 연구)

  • Han-Go Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • Numerous studies of short-term, beat-to-beat variability in cardiovascular signals have used linear analysis techniques. However, no study has been done about the appropriateness of linear techniques or the comparison between linearities and nonlinearities in short-term, beat-to-beat variability. This paper aims to verify the appropriateness of linear techniques by investigating nonlinearities in short-term, beat-to-beat variability. We compared linear autoregressive moving average(ARMA) with nonlinear neural network(NN) models for predicting current instantaneous heart rate(HR) and mean arterial blood pressure(BP) from past HRs and BPs. To evaluate these models. we used HR and BP time series from the MIMIC database. Experimental results indicate that NN-based nonlinearities do not play a significant role and suggest that 10 technique provides adequate characterization of the system dynamics responsible for generating short-term, beat-to-beat variability.

A Short-Term Traffic Information Prediction Model Using Bayesian Network (베이지안 네트워크를 이용한 단기 교통정보 예측모델)

  • Yu, Young-Jung;Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.765-773
    • /
    • 2009
  • Currently Telematics traffic information services have been various because we can collect real-time traffic information through Intelligent Transport System. In this paper, we proposed and implemented a short-term traffic information prediction model for giving to guarantee the traffic information with high quality in the near future. A Short-term prediction model is for forecasting traffic flows of each segment in the near future. Our prediction model gives an average speed on the each segment from 5 minutes later to 60 minutes later. We designed a Bayesian network for each segment with some casual nodes which makes an impact to the road situation in the future and found out its joint probability density function on the supposition of GMM(Gaussian Mixture Model) using EM(Expectation Maximization) algorithm with training real-time traffic data. To validate the precision of our prediction model we had conducted various experiments with real-time traffic data and computed RMSE(Root Mean Square Error) between a real speed and its prediction speed. As the result, our model gave 4.5, 4.8, 5.2 as an average value of RMSE about 10, 30, 60 minutes later, respectively.

Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul (k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례)

  • KIM, Hyungjoo;PARK, Shin Hyoung;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.

Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM (DNN 및 LSTM 기반 딥러닝 모형을 활용한 태화강 유역의 수위 예측)

  • Lee, Myungjin;Kim, Jongsung;Yoo, Younghoon;Kim, Hung Soo;Kim, Sam Eun;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1061-1069
    • /
    • 2021
  • Recently, the magnitude and frequency of extreme heavy rains and localized heavy rains have increased due to abnormal climate, which caused increased flood damage in river basin. As a result, the nonlinearity of the hydrological system of rivers or basins is increasing, and there is a limitation in that the lead time is insufficient to predict the water level using the existing physical-based hydrological model. This study predicted the water level at Ulsan (Taehwagyo) with a lead time of 0, 1, 2, 3, 6, 12 hours by applying deep learning techniques based on Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and evaluated the prediction accuracy. As a result, DNN model using the sliding window concept showed the highest accuracy with a correlation coefficient of 0.97 and RMSE of 0.82 m. If deep learning-based water level prediction using a DNN model is performed in the future, high prediction accuracy and sufficient lead time can be secured than water level prediction using existing physical-based hydrological models.

Crack growth prediction on a concrete structure using deep ConvLSTM

  • Man-Sung Kang;Yun-Kyu An
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.301-311
    • /
    • 2024
  • This paper proposes a deep convolutional long short-term memory (ConvLSTM)-based crack growth prediction technique for predictive maintenance of structures. Since cracks are one of the critical damage types in a structure, their regular inspection has been mandatory for structural safety and serviceability. To effectively establish the structural maintenance plan using the inspection results, crack propagation or growth prediction is essential. However, conventional crack prediction techniques based on mathematical models are not typically suitable for tracking complex nonlinear crack propagation mechanism on civil structures under harsh environmental conditions. To address the technical issue, a field data-driven crack growth prediction technique using ConvLSTM is newly proposed in this study. The proposed technique consists of the four steps: (1) time-series crack image acquisition, (2) target image stabilization, (3) deep learning-based crack detection and quantification and (4) crack growth prediction. The performance of the proposed technique is experimentally validated using a concrete mock-up specimen by applying step-wise bending loads to generate crack growth. The validation test results reveal the prediction accuracy of 94% on average compared with the ground truth obtained by field measurement.

Application of cost-sensitive LSTM in water level prediction for nuclear reactor pressurizer

  • Zhang, Jin;Wang, Xiaolong;Zhao, Cheng;Bai, Wei;Shen, Jun;Li, Yang;Pan, Zhisong;Duan, Yexin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1429-1435
    • /
    • 2020
  • Applying an accurate parametric prediction model to identify abnormal or false pressurizer water levels (PWLs) is critical to the safe operation of marine pressurized water reactors (PWRs). Recently, deep-learning-based models have proved to be a powerful feature extractor to perform high-accuracy prediction. However, the effectiveness of models still suffers from two issues in PWL prediction: the correlations shifting over time between PWL and other feature parameters, and the example imbalance between fluctuation examples (minority) and stable examples (majority). To address these problems, we propose a cost-sensitive mechanism to facilitate the model to learn the feature representation of later examples and fluctuation examples. By weighting the standard mean square error loss with a cost-sensitive factor, we develop a Cost-Sensitive Long Short-Term Memory (CSLSTM) model to predict the PWL of PWRs. The overall performance of the CSLSTM is assessed by a variety of evaluation metrics with the experimental data collected from a marine PWR simulator. The comparisons with the Long Short-Term Memory (LSTM) model and the Support Vector Regression (SVR) model demonstrate the effectiveness of the CSLSTM.

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

Short-term Distributed Rainfall Prediction using Stochastic Error Field Modeling

  • Kim, Sun-Min;Tachikawa, Yasuto;Takara, Kaoru
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.225-229
    • /
    • 2005
  • 이류모형을 이용한 단기예측 레이더 강우자료와 관측 레이더자료의 비교를 통하여 얻어진 예측오차를 분석하였다. 임의 시점까지의 예측오차 장에 나타나는 확률분포 형태와 공간적 상관성을 분석하여 이들 특성을 반영하는 추후의 예측오차 장을 모의할 수 있었다. 모의된 예측오차 장과 합성된 단기예측 강우 장은 이류모형을 이용한 예측에 따른 불확실성 을 추계학적으로 반영한 예측강우를 제공한다.

  • PDF

The Analysis of Statistical Behavior in Concrete Creep (콘크리트 크리프의 확률론적 거동 해석)

  • Kim, Doo-Hwan;Park, Jong-Choul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.237-246
    • /
    • 2001
  • This study is to measure the creep coefficient by 3 days, 7 days and 28 days in the age when loading for the quality assessment of $350kgf/cm^2$ in the high-strength concrete. And it is to analyze the behavior of creep coefficient by applying the experimental data though the compressive strength test, the elastic modulus test and the dry shrinkage test to the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design. Also it is to analyze the behavior of short-term creep coefficient during 91 days in the age when loading through the experiment by using the regression analysis, the statistical theory. As applying it to the long-term behavior during 365 days and comparing with the creep prediction mode and examining it, the result from the analysis of the quality of the concrete is as follows. As the result of comparison and analysis about the ACI-209, AASHTO-94 and CEB/FIP-90, the prediction mode, and the basis of concrete structural design, the normal Portland cement class 1 shows the approximate value with the prediction of GEE/PIP-90 and the basis of concrete structural design, but in case of the prediction of ACI-209 and AASHTO-94, there would be worry of underestimation in the application.

  • PDF