• Title/Summary/Keyword: Short channel effect

Search Result 244, Processing Time 0.032 seconds

Device Optimization for Suppression of Short-Channel Effects in Bulk FinFET with Vacuum Gate Spacer (진공 게이트 스페이서를 지니는 Bulk FinFET의 단채널효과 억제를 위한 소자구조 최적화 연구)

  • Yeon, Ji-Yeong;Lee, Khwang-Sun;Yoon, Sung-Su;Yeon, Ju-Won;Bae, Hagyoul;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.576-580
    • /
    • 2022
  • Semiconductor devices have evolved from 2D planar FETs to 3D bulk FinFETs, with aggressive device scaling. Bulk FinFETs make it possible to suppress short-channel effects. In addition, the use of low-k dielectric materials as a vacuum gate spacer have been suggested to improve the AC characteristics of the bulk FinFET. However, although the vacuum gate spacer is effective, correlation between the vacuum gate spacer and the short-channel-effects have not yet been compared or discussed. Using a 3D TCAD simulator, this paper demonstrates how to optimize bulk FinFETs including a vacuum gate spacer and to suppress short-channel effects.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Drain induced barrier lowering and impact ionization effects in short channel polysilicon TFTs

  • Fortunato, G.;Valletta, A.;Gaucci, P.;Mariucci, L.;Cuscuna, M.;Maiolo, L.;Pecora, A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.907-910
    • /
    • 2008
  • The effect of channel length reduction on the electrical characteristics of self-aligned polysilicon TFTs has been investigated by combining experimental characteristics and 2-D numerical simulations. The role of drain induced barrier lowering and floating body effects has been carefully analized using numerical simulations.

  • PDF

Performance Improvement of IEEE 802.11a WLAN System by Improved Channel Estimation Scheme using Long/Short Training Symbol (Long/Short 훈련심볼을 이용하는 개선된 채널추정기법에 의한 IEEE 802.11a 무선 LAN 시스템의 성능 개선)

  • Kwak, Jae-Min;Jung, Hae-Won;Cho, Sung-Joon;Lee, Hyeong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In this paper, the BER performance of IEEE 802.11a OFDM WLAN system is obtained by simulation and it is shown that the proposed modified channel estimation algorithm improves the channel estimation performance of the system. The wireless channel used in channel simulation includes AWGN and delay spread channel implemented by TDL model. At first, the performance of OFDM WLAN system according to data rate and coding rate defined in standard is evaluated in AWGN channel. Then, imperfect channel estimation in indoor wireless channel is considered. After the performance of conventional channel estimation scheme using only two long training symbols is evaluated, and that of proposed modified channel estimation scheme using additional 8 short training symbol is compared with it. From the simulation results, it is shown that modified channel estimation scheme provides reduced channel estimation error and improves the channel estimation performance due to noise averaging effect with the same preamble format as defined in specification.

  • PDF

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

A Study on the Extraction of Mobility Reduction Parameters in Short Channel n-MOSFETs at Room Temperature (상온에서 짧은 채널 n-MOSFET의 이동도 감쇠 변수 추추에 관한 연구)

  • 이명복;이정일;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1375-1380
    • /
    • 1989
  • Mobility reduction parameters are extracted using a method based on the exploitatiion of Id-Vg and Gm-Vg characteristics of short channel n-MOSFETs in strong inversion region at room temperature. It is found that the reduction of the maximum field effect mobility, \ulcornerFE,max, with the channel length is due to i) the difference between the threshold voltage and the gate voltage which corresponds to the maximum transconductance, and ii) the channel length dependence of the mobility attenuation coefficient, \ulcorner The low field mobility, \ulcorner, is found to be independent of the channel length down to 0.25 \ulcorner ofeffective channel length. Also, the channel length reduction, -I, the mobility attenuation coefficient, \ulcorner the threshold voltage, Vt, and the source-drain resistance, Rsd, are determined from the Id-Vg and -gm-Vg characteristics n-MOSFETs.

  • PDF

A Study on the Current-Voltage Characteristics of a Short-Channel GaAs MESFET Using a New Linearly Graded Depletion Edge Approximation (선형 공핍층 근사를 사용한 단채널 GaAs MESFET의 전류 전압 특성 연구)

  • 박정욱;김재인;서정하
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.6-11
    • /
    • 2000
  • In this paper, suggesting a new linearly -graded depletion edge approximation, the current-voltage characteristics of an n-type short-channel GaAs MESFET device has been analyzed by solving the two dimensional Poisson's equation in the depletion region. In this model, the expressions for the threshold voltage, the source and the drain ohmic resistance, and the drain current were derived. As a result, typical Early effect of a short channel device was shown and the ohmic voltage drop by source and drain contact resistances could be explained. Furthermore our model could analyze both the short-channel device and the long-channel device in a unified manner.

  • PDF

An Analytical Model for Deriving The Threshold Voltage Expression of A Short-gate Length SOI MESFET (Short-gate SOI MESFET의 문턱 전압 표현 식 도출을 위한 해석적 모델)

  • Kal, Jin-Ha;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, a simple analytical model for deriving the threshold voltage of a short-gate SOI MESFET is suggested. Using the iteration method, the Poisson equation in the fully depleted silicon channel and the Laplace equation in the buried oxide region are solved two-dimensionally, Obtained potential distributions in each region are expressed in terms of fifth-order of $\chi$, where $\chi$ denotes the coordinate perpendicular to the silicon channel direction. From them, the bottom channel potential is used to describe the threshold voltage in a closed-form. Simulation results show the dependencies of the threshold voltage on the various device geometry parameters and applied bias voltages.

A study on the device structure optimization of nano-scale MuGFETs (나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구)

  • Lee Chi-Woo;Yun Serena;Yu Chong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.23-30
    • /
    • 2006
  • This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

Gate Capacitance Measurement on the Small-Geometry MOSFET's with Bias (Small-Geometry MOSFET에서 Bias에 따른 게이트 Capacitance 측정)

  • 김천수;김광수;김여환;이진효
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.818-822
    • /
    • 1987
  • Gate capacitances have been measured directly on small-geometry MOSFET's with the drain voltage as a parameter for various channel lengths and for p and n channel types and the characteristics have been compared with each other. The influence of 'hot carrier effect' of short channel devices on capaciatance has been compared with long channel devices. The results show that gate capacitance characteristics of short channel device deviate from those of long channel device. The accuracy of the measurement system is less than a few femto Farad, and the minimum geometry (W/L) of device for which reliable measurement can be obtained is 6/3.

  • PDF