• Title/Summary/Keyword: Shoot

Search Result 2,985, Processing Time 0.028 seconds

Changes of Biomass, Net Primary Productivity and P/B Ratio during Abandoned Field Succession after Shifting Cultivation in Korea (화전 후 묵밭의 식생 천이에 따른 식물량, 순 일차 생산성 및 P/B 비의 변화)

  • Lee, Kyu-Song
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.237-245
    • /
    • 2006
  • Changes of the biomass, net primary productivity and P/B ratio during abandoned field succession after shifting cultivation were investigated in Pyoungchang, Gangwon-Do, Korea. Aboveground standing biomass of herb species showed the maximum value (3.8 ton/ha) in the 5 year old-field, and decreased thereafter. Litter dry weight was depicted as a parabola form showing the gradual increment during the first 50 years and slight decrease thereafter. Basal area tended to increase logarithmically during abandoned field succession. Tree density showed the gradual increment during the first 15 years and decreased thereafter by the self-thinning process. In the later successional stage (80 years old-field), the shoot density distribution of the tree species by DBH class showed the reverse J shaped curve and Quercus mongolica dominated. Total standing biomass increased slowly in the earlier successional stages and later successional stages, and increased rapidly during the mid-successional stages ($10{\sim}50$ years old-field). Total standing biomass in the 5, 10, 20, 50 and 80 years old-fields were estimated 5, 14, 75, 251 and 373 ton/ha, respectively. Annual net primary productivity were depicted as a parabola form showing the gradual increment during the first 35 years and declined thereafter. The increment rates of the annual net primary productivity in the earlier successional stages showed the higher value than mid-successional stages. The annual net primary productivities in the 5, 10, 20, 35, 50 and 80 years old-field were estimated 8.6, 9.3, 12.9, 15.1, 13.7 and 3.6 ton/ha/yr, respectively. The estimated P/B ratio tended to decrease exponentially during abandoned field succession. The estimated P/B ratio in the 5, 10, 20, 50 and 80 years old-field were 0.60, 0.39, 0.19, 0.06 and 0.01, respectively. These results were fairly in accordance with the bioenergetics model during the forest succession projected by Odum(1969).

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea (난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용)

  • Son, Yeong Mo;Kim, Rae Hyun;Kang, Jin Taek;Lee, Kwang Su;Kim, So Won
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.593-598
    • /
    • 2014
  • In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

Freezing Resistance of Cryptomeria japonica - Its clonal and Seasonal Differences - (삼나무의 내한성(耐寒性) - 품종별(品種別) 채취시기별(採取時期別) 차이(差異) -)

  • Hwang, Jeung;Hong, Sung Gak
    • Journal of Korean Society of Forest Science
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 1978
  • This study aimed to know difference in freezing resistance among different clonal seedlings or different seed source seedlings of Cryptomeria japonica which has been selected where extreme cold prevails in Korea and Japan. The freezing resistance of three 12-50 year old trees was also measured in the experiment. The freezing resistance was measured in different tissue parts: mainly leaf, cambiam and xylem, at three different collection dates in two different collection places during the winter of 1977-1978. The following results and discussions were made: 1. The clonal difference in freezing resistance of Cryptomeria japonica was $9^{\circ}$ to $15^{\circ}C$ in maximum according to the collection place. However, the clonal difference in freezing resistance was not related to the difference in climatic conditions where the parent tree have been growing. This impiled that the natural selection of cold resistant genes in Cryptomeria japonica has not reached its evolutional equilibrium yet since most of the Cryptomeria forest has been established by artificial regeneration. 2. The difference in freezing resistance among leaf, cambium and xylem was not apparent except that leaf of several clones showed higher freezing resistance than cambium or xylem when they collected at mid-winter. The least freezing resistant tissue part, thought its freezing resistance was not measure in all clones and all temperatures were appeared in the apical buds. The new shoot growth was observed in the next spring with being replaced by its dormant or adventitious bud growth when the apical bud was injured dy cold during winter. 3. The freezing resistance of leaf, cambium and xylem was shown high enough so that freezing resistance Cryptomeria clones in this experiment were supposed to be able to survive in cold winter conditions at the middle part of Korea. However, it was reported that the most susceptible tissue part to winter injury was the basal stem, but of which freezing resistance was not-measured in this experiment. Several silvicultural methods for prevention of Cryptomeria seedlings from cold damage were discussed in literature.

  • PDF

Fertilizer Concentration after Flowering Affects Growth and Fruit Setting of Ornamental Pepper (개화 후 비료의 농도가 Ornamental Pepper의 생장과 착과에 미치는 영향)

  • 진영욱;정순주;이범선;강종구
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • To evaluate the effect of the fertilizer concentration after flowering on growth a31d fruit setting of ornamental pepper (Capsicum annuum L.), plants were fertilized with $100\;mg{\cdot}L^{-1} of N ($EC=0.8\;dS{\cdot}m^{-1}) until flowering, and then with 0 (no fertilizer), 100, 200 or $300\;mg{\cdot}L^{-1} of N (fertilizer solution EC of 0.15, 0.8, 1.45 or $2.10\;dS{\cdot}m^{-1}, respectively) until harvest. Maximum leaf area and shoot dry mass at the end of the growing period were obtained when plants were fertilized with $200\;mg{\cdot}L^{-1} of N. Total fruit number per plant at the end of the growing period was not different when plants were fertilized with 100,200 or 300 mg{\cdot}L^{-1}of N concentration. When plants were fertilized with $200\;mg{\cdot}L^{-1} of N, the number of fruits per plant was decreased significantly as compared to 100, 200 or $300\;mg{\cdot}L^{-1} of N, whereas the percentage of red fruits at the end of the growing period was maximized. Total fruit fresh weight per plant at the end of the growing period was highest with the concentration of $200\;mg{\cdot}L^{-1} of N. The EC of the growing medium remained within 0.8 to $1.2\;dS{\cdot}m^{-1}\;2.0\;to\;3.0dS{\cdot}m^{-1}, or 3.0 to 4.5 dS{\cdot}m^{-1}when fertilizer concentrations were 100, 200 or $300\;mg{\cdot}L^{-1} of N, respectively. Throughout most of the experiment, the pH of the growing medium remained within 5.4 to 6.2, but dropped to 4.9 near the end of the experiment when fertilizer concentration was 200 or 300\;mg{\cdot}L^{-1} of N. Content of most of the nutrients In the leaf was not affected by the different fertilizer concentration. Only aluminum was significantly affected and decreased linearly with increasing fertilizer concentration. The results from this study indicated that optimal fertilizer concentration after flowering for commercial production of ornamental pepper was 100 or $200\;mg{\cdot}L^{-1} of N. At these concentrations, the EC of the growing medium remained approximately within 0.8 to 1.2 and 2 to $3\;dS{\cdot}m^{-1}, respectively. This appears to be the optimal range for vegetative growth or fruit setting of ornamental pepper plants, and indicates that ornamental pepper can be grown with a fairly wide range of fertilizer concentrations.

Increased Growth by LED and Accumulation of Functional Materials by Florescence Lamps in a Hydroponics Culture System for Angelica gigas (당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적)

  • Lee, Gong-In;Kim, Hong-Ju;Kim, Sung-Jin;Lee, Jong-Won;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Angelica gigas, belonging family Apiaceae, is a perennial and famous medical plant growing in Korea, Japan, and China. The aims of this study was to analyze the growth and accumulated Decursin and its precursor Decursinol angelate of A.gigas grown under fluorescent lamp and LED. A. gigas 'Manchu' were sowed and managed for seedlings stage in a glass house for 4 weeks. One hundred twenty seedlings with 3 true leafs were transplanted at an ebb & flow system with fluorescent lamp and LED [red: peak wavelength 660nm, blue: peak wavelength 455 nm, white = 3:2:4 ratio] irradiated at $180{\pm}7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at the top of plant canopy for 5 weeks. The number of leaves increased by 13.5% in the LED treatment, though it is not statistically significant. Leaf length/width ratio of A. gigas grown under the fluorescent lamps was 24% bigger than the LED treatment and also the stem was 13% larger. Maximum root length was similar to both groups. Fresh weight and dry weight of shoots grown under the LED increased by 50% and 42% and the both weights of roots increased by 125% and 45%, respectively. The contents of Decursin and Decursinol angelate grown under the florescent lamps were larger than LED by 188% and 27% in shoot and 78% and 8% in root. The contents of Decursin and Decursinol angelate per plant grown under LED and florescent lamps were 132mg and 122mg. In conclusion, functional materials in A. gigas were increased by florescent light and its growth was promoted by LEDs light.

Effects of Apex Removal on the Growth and Yield of Artichoke by Planting Times (정식시기별 생장점 제거가 아티초크(Cynara scolymus L.)의 생육 및 수량에 미치는 영향)

  • Seong, Ki-Cheol;Kim, Chun Hwan;Son, Danial;Lim, Chan Gyu;Cheon, Sung Jong
    • Journal of Bio-Environment Control
    • /
    • v.23 no.1
    • /
    • pp.56-59
    • /
    • 2014
  • Apex removal is a common practice in artichoke cultivation to harvest heads of lateral shoots. This experiment was carried out to investigate the effect of apex removal by different planting times on the growth and yield of Artichoke (Cynara scolymus L.) in open field. Two treatments (apex removal and no apex removal) at three different planting times ($1^{st}$: Sep. 27, 2011, $2^{nd}$: March 29, 2012, and $3^{rd}$: Sep. 21, 2012) were tested using 'Green Globe' variety. There was no difference in the head characteristics and the number of harvested head between the treatments. The head weight was heavier in no apex removal of 242.7 g than the apex removal of 170.8 g. The yield also increased in no apex removal by 25% (1,249 kg/10a) compared to the apex removal of 997 kg/10a at the first planting time. At the second planting time, there was no difference in the head weights between the treatments. But the number of the harvested head was higher in no apex removal with 10.8 than 8.2 of the apex removal. The yield of no apex removal was 2,660 kg/10a, which was higher than 1,848 kg/10a of apex removal. At the third planting time, the head weight increased in no apex removal with 253.5 g compared to the apex removal with 218.7 g. The yield of no apex removal was 1,405 kg/10a, which was higher than 1,148 kg/10a of the apex removal. All the tests at 3 different planting times showed that the artichoke yields were higher in no apex removal than in apex removal. Therefore, it is desirable to cultivate artichoke without removing the apex for the higher yield and labor saving in open-field cultivation in Jeju island.

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Growth and Yield Variations among Generations in Field Cultivation of Virus-free Sweet Potato Plants (고구마 바이러스 무병묘의 세대간 생육 및 수량 변이)

  • Lee, Seung Yeob;Lee, Na Ra
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • This work was conducted to investigate the variation of growth and yield among three generations ($TC_0$, $TC_1$, and $TC_2$) in the field cultivation of virus-free sweetpotato (Ipomoea batatas) plants. Virus-free generations of three cultivars ('Matnami', 'Shinhwangmi', and 'Yeonhwangmi') were cultivated with $75{\times}25cm$ planting density on May 20th, covered with black vinyl film. At 30 days after planting, vine growth in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant, and vine length in $TC_0$ showed the highest growth among treatments. At harvesting time after 120 days, vine diameter, number of node, and number of branch in $TC_0$, $TC_1$, and $TC_2$ were more increased than farmer's plant, but were not statistically significant. Fresh weight of shoot in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant, but was not statistically significant among generations or cultivars. Number of tuber per plant and mean weight of tuber in $TC_0$ and $TC_1$ showed significant increasement, but that in $TC_2$ did not show significant difference as compared to the farmer's plant. Weight of tuber per plant in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant. Marketable yield, percentage of marketable tuber, and percentage of small tuber (40 to 200g) in $TC_0$, $TC_1$, and $TC_2$ was significantly increased as compared to the farmer's plant. The large tuber over 300g showed the lowest percentage in $TC_0$. Marketable yield in $TC_2$ was significantly decreased as compared to $TC_0$, and was not significantly different as compared to the farmer's plant. Marketable yield in 'Matnami' was highest among cultivars. From this results, Farmers are required to renew every three years to maintain the yield and quality of virus-free plants. However, the exchange period of virus-free plants is desirable to renew every 2 or 3 years according to the degree of virus reinfection.

Effects of Crop Loads on Vine Growth and Fruit Quality of 'Jinok' Grape in Unheated Plastic House (포도 '진옥' 품종의 무가온 하우스 재배시 착과량이 수체생육 및 과실품질에 미치는 영향)

  • Cheon, Mi Geon;Kim, Yeong Bong;Kim, Seong Ran;Lee, Kang Mo;Hong, Gwang Pyo;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.296-300
    • /
    • 2015
  • This study was conducted to investigate optimal crop loads of 'Jinok' grape for unheated plastic house culture. The crop loads of 'Jinok' grapes were managed to be 1.3, 1.8, 2.2, 2.4, and 2.6t per 10a from 2012 to 2014. We measured vine growth and berry qualities. Crop loads were not significantly affected on plant height, trunk diameter, shoot length, and the internode length of 'Jinok'. However, the maturation of berries was delayed when the crop load was higher. And the harvest date was earlier about three weeks in an unheated plastic house compared to in an open field. The average berry weight was decreased by the higher crop load although higher crop loads made higher yields showing the lowest weight at 342g with the treatment of 2.6t per 10a and the highest weight at 363g with the treatment of 1.3t per 10a. Also, the soluble solids content showed a tendency that higher crop loads brought to lower degree Brix. The contents of P, K, Ca, and Mg in grape leaves and shoots were not significantly different by crop loads. To sum up, when crop loads were under the 2.4t per 10a, the berries were harvested as a marketable fruit having $15^{\circ}Brix$ in the cultivar 'Jinok' grape. This result could help to increase grower's benefit having improved quality of fruit for the sustainable production by the established cultivation techniques for the newly developed cultivar 'Jinok'.

Effect of Nutrient Solution Concentration on the Growth and Mineral Uptake of Various Wrap-up Vegetables and Herbs Grown with Mixed Planting in DFT Hydroponics (담액 수경재배 시 양액농도 처리가 혼식한 쌈 채소류와 허브류의 생육과 무기양분 흡수에 미치는 영향)

  • Seo, Tae-Cheol;Rho, Mi-Young;Gang, Nam-Jun;Lee, Seong-Chan;Choi, Young-Hah;Yun, Hyung-Kweon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.395-406
    • /
    • 2007
  • The twenty seven wrap-up vegetables (13 Compositae, 14 Brassicaceae) and seven herbs (6 Labiatae, 1 Umbelliferae) were cultivated with a deep flow technique (DFT) hydroponic beds and treated with 3 levels of nutrient solution concentrations of 1.2, 2.4, and $3.6dS{\cdot}m^{-1}$ in summer and autumn season. The pH and electrical conductivity (EC) change of nutrient solution, fresh weight, and mineral contents of plants were investigated. The pH was maintained lower in high electrical conductivity (EC) treatment and in summer than autumn. EC of nutrient solution in EC $3.6dS{\cdot}m^{-1}$ treatment increased up to $4.8dS{\cdot}m^{-1}$ during the growing period in summer season. The growth of tested plants showed high variations by plant species and nutrient solution concentrations. The coefficient variation (CV) of the shoot fresh weight of plants was higher in summer than autumn. The growth of Compostiae and herbs was better at EC $1.2dS{\cdot}m^{-1}$, and 14 Brassicaceae was better at EC $2.4dS{\cdot}m^{-1}$ in summer. In autumn, the growth was better at EC $2.4dS{\cdot}m^{-1}$ in all plants except kale 'TBC F1' and red rape 'honchaetae'. In mineral contents, total nitrogen and potassium were higher in autumn than summer. Total nitrogen, potassium, calcium, magnesium were higher in Brassicaceae than others. Iron and manganese, however, were higher in Compositae. As the results, this study suggests that mixed planting of 27 wrap-up vegetables and 7 herbs in DFT hydroponics in two seasons was possible and EC $1.2dS{\cdot}m^{-1}$ in summer and EC $2.4dS{\cdot}m^{-1}$ in autumn be recommended as for the nutrient solution concentration to produce them safely year round.