DOI QR코드

DOI QR Code

A Practical Application and Development of Carbon Emission Factors for 4 Major Species of Warm Temperate Forest in Korea

난대지역 주요 4개 수종의 탄소배출계수 개발 및 적용

  • Son, Yeong Mo (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Kim, Rae Hyun (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Kang, Jin Taek (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Lee, Kwang Su (Southern Forest Resource Research Center, Korea Forest Research Institute) ;
  • Kim, So Won (Center for Forest & Climate Change, Korea Forest Research Institute)
  • 손영모 (국립산림과학원 기후변화연구센터) ;
  • 김래현 (국립산림과학원 기후변화연구센터) ;
  • 강진택 (국립산림과학원 기후변화연구센터) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 김소원 (국립산림과학원 기후변화연구센터)
  • Received : 2014.04.14
  • Accepted : 2014.08.08
  • Published : 2014.12.31

Abstract

In this study, we developed the carbon emission factors for 4 major species of warm-temperate region in Korea, and tried to provide their carbon emissions and removals estimates using these carbon emission factors. We selected Castanopsis cuspidata, Camellia japonica, Quercus acuta and Quercus glauca as target species and derived their carbon emission factors. The basic wood density that serve as one of the carbon emission factors were 0.583 for Castanopsis cuspidata, 0.657 for Camellia japonica, 0.833 for Quercus acuta and 0.763 for Quercus glauca and their uncertainties ranged from 5.3 to 17.9%. Biomass expansion factors were calculated as well: 1.386 for Castanopsis cuspidata, 2.621 for Camellia japonica, 1.701 for Quercus acuta and 2.123 for Quercus glauca and associated uncertainties varied from 14.7 to 30.5%. Lastly root-shoot ratios for each species were also determined: 0.454 for Castanopsis cuspidata, 0.356 for Camellia japonica, 0.191 for Quercus acuta and 0.299 for Quercus glauca with the uncertainties lying within a range from 19.8 to 35.7%. These three carbon emission factors including basic wood density had the uncertainties of less than 40% recommended by FAO. Therefore the application of country-specific emission factors seemed to provide quite accurate estimates of carbon emissions and removals. The estimation of the carbon stored in the 4 species were also conducted which amounted to $186.10tCO_2/ha$ for Castanopsis cuspidata, $280.63tCO_2/ha$ for Camellia japonica, $344.04tCO_2/ha$ for Quercus acuta and $278.91tCO_2/ha$ for Quercus glauca and their annual carbon removals were $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$ and $12.29tCO_2/ha/yr$, respectively. This systematic assessment of forest resources can be a reliable source of information for managing evergreen broadleaved forest in warm temperate regions and thus serve as useful data for effective decision-making to address vegetation zone shifts due to climate change.

본 연구는 주요 4개 난대수종에 대한 탄소배출계수를 개발하고 이를 이용하여 탄소저장/흡수량을 산정하고자 하였다. 대상 수종은 구실잣밤나무, 동백나무, 붉가시나무 및 종가시나무였으며, 이들에 대한 탄소배출계수는 다음과 같이 도출되었다. 탄소배출계수 중 하나인 목재기본밀도는 구실잣밤나무 0.583, 동백나무 0.657, 붉가시나무 0.833, 종가시나무 0.763이었으며, 이들 계수에 대한 불확도는 5.3~17.9%의 범위에 있는 것으로 나타났다. 바이오매스 확장계수는 구실잣밤나무 1.386, 동백나무 2.621, 붉가시나무 1.701, 종가시나무 2.123이었으며, 이들에 대한 불확도는 14.7~30.5%의 범위에 있었다. 또한 뿌리 함량비는 구실잣밤나무 0.454, 동백나무 0.356, 붉가시나무 0.191, 종가시나무 0.299이었으며, 이들에 대한 불확도는 19.8~35.7%의 범위에 있는 것으로 나타났다. 목재기본밀도 등 3개의 탄소배출계수는 모두 FAO에서 권장하는 40% 이하의 불확도를 갖고 있으므로 국가고유계수로 활용할 수 있을 것으로 판단된다. 난대지역에 분포하는 주요 4개 수종에 대한 탄소저장량을 산정한 결과, 구실잣밤나무 $186.10tCO_2/ha$, 동백나무 $280.63tCO_2/ha$, 붉가시나무 $344.04tCO_2/ha$, 종가시나무 $278.91tCO_2/ha$으로 나타났으며, 연간 탄소흡수량은 $6.65tCO_2/ha/yr$, $6.25tCO_2/ha/yr$, $11.70tCO_2/ha/yr$, $12.29tCO_2/ha/yr$으로 각각 나타났다. 이러한 정보는 난대지역 상록활엽수림 경영관리에 있어 중요한 정보가 될 것이며, 기후변화에 의한 산림 식생대 변화를 대비하는 정책적 자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Aldred, A.H. and Alemdag, I.S. 1988. Guidelines for forest biomass inventory. Canadian Forest Service, Information Report PI-X-77. pp. 134.
  2. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies. Hayama, Japan.
  3. IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories, volume 4 Agriculture, forestry and other land use. Institute for Global Environmental Strategies. Hayama, Japan.
  4. Iehara, T. 2008. The biomass parameter in Japan for GHG accounting-BEF and roor-shoot ratio, wood density-. Workshop on forest biomass and soil carbon inventory system in East Asia. pp. 22.
  5. Jung, S.H. and Park, B.S. 2008. Wood properties of the useful tree species grown in Korea. KFRI. pp. 390. (in Korean)
  6. Korea Forest Research Institute. 2010. Survey Manual for Biomass and Soil Carbon. pp. 60.
  7. Korea Forest Research Institute. 2012. Standard carbon removal of major forest species. Korea Forest Research Institute, briefing memo. pp. 18.
  8. Parde, J. 1980. Forest Biomass. Forestry Abstracts 41: 343-362.
  9. Son, Y.M., Kim, J.C., Lee, K.H., and Kim, R.H. 2007. Assessment for Forest Biomass in Korea. Korea Forest Research Institute Report 07-22. pp. 105. (in Korean)
  10. Son, Y.M., Lee, K.H., Kim, R.H, Pyo, J.K., Park, I.H., Son, Y.H, Lee, Y.J., and Kim, C.S. 2010. Carbon factors in major species for forest green gas inventory. Korea Forest Research Institute Report 11-25. pp. 89. (in Korean)
  11. Son, Y.M., Lee, K.H., Kweon S.D. and Pyo, J.K. 2012. Forest volume, biomass and stand yield table. Korea Forest Research Institute. pp. 261. (in Korean)
  12. Southern Forest Resource Research Center. 2013. Korea Forest Research Institute Report 5-5. (in Korean)

Cited by

  1. Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.294
  2. Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.358
  3. Estimation of Forest Carbon Stocks for National Greenhouse Gas Inventory Reporting in South Korea vol.9, pp.10, 2018, https://doi.org/10.3390/f9100625
  4. Comparison of allometric equations and biomass expansion factors for six evergreen broad-leaved trees in subtropical forests in southern Korea pp.1540-756X, 2018, https://doi.org/10.1080/10549811.2018.1528157
  5. Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea vol.42, pp.5, 2018, https://doi.org/10.1186/s41610-018-0068-1
  6. Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis vol.12, pp.15, 2014, https://doi.org/10.3390/su12156244