• Title/Summary/Keyword: Shewhart-type chart

Search Result 12, Processing Time 0.03 seconds

Optimal Designs for Attribute Control Charts

  • Chung, Sung-Hee;Park, Sung-Hyun;Park, Jun-Oh
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.97-103
    • /
    • 2003
  • Shewhart-type control charts have historically been used for attribute data, though they have ARL biased property and even are unable to detect the improvement of a process with some process parameters. So far most efforts have been made to improve the performance of attribute control charts in terms of faster detection of special causes without increasing the rates of false alarm. In this paper, control limits are proposed that yield an ARL (nearly) unbiased chart for attributes. Optimal design is also proposed for attribute control charts under a natural sense of criterion.

  • PDF

INFLUENCE OF SPECIAL CAUSES ON STOCHASTIC PROCESS ADJUSTMENT

  • Lee, Jae-June;Mihye Ahn
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.219-231
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Although original intention of process adjustment is not identifying a special cause, detection and elimination of special causes may lead to significant process improvement. In this paper, we examine the impact of special causes on process adjustment. The bias in the adjusted output process is derived for each type of special causes, and average run length (ARL) of the Shewhart chart applied to the adjusted output is computed for each special cause types. Numerical results are illustrated for the ARL of the Shewhart chart, thereupon seriousness of special causes on process adjustment is evaluated for each type of special causes.

An Economic-Statistical Design of Moving Average Control Charts

  • Yu, Fong-Jung;Chin, Hsiang;Huang, Hsiao Wei
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • Control charts are important tools of statistical quality control. In 1956, Duncan first proposed the economic design of $\bar{x}-control$ charts to control normal process means and insure that the economic design control chart actually has a lower cost, compared with a Shewhart control chart. An moving average (MA) control chart is more effective than a Shewhart control chart in detecting small process shifts and is considered by some to be simpler to implement than the CUSUM. An economic design of MA control chart has also been proposed in 2005. The weaknesses to only the economic design are poor statistics because it dose not consider type I or type II errors and average time to signal when selecting design parameters for control chart. This paper provides a construction of an economic-statistical model to determine the optimal parameters of an MA control chart to improve economic design. A numerical example is employed to demonstrate the model's working and its sensitivity analysis is also provided.

A Study of the effective approach method for median control chart of non-normally distributed process (비정규분포공정에서 계량치관리를 위한 메디안 특수 관리도의 모형설계와 그 적용에 관한 실용에 연구)

  • 신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.19-32
    • /
    • 1988
  • Whereas is non-symmetrical distribution manufacturing process the traditional X-chart by Shewhart is not plotted relatively on the central line but plotted on the skew of upper-hand side or lower-hand side. That is to say, for the purpose of producing either upper-specification-oriented items or lower-specification-oriented items, and when we carry out tighter control so as to have them pass only its specifications, the distribution shape naturally has a non-normal distribution. In the Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make tile plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such short comings is non-normally distributed processes, a distribution-free type of confidence interval can be used, which should be haled on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for non-normal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions, may be easily analyzed. To enhance this improvement, I proved the property of practical applications of control chart method by comparing and analyzing the case studies of practical application of special purpose control chart method, and also by introducing the new designed median control chart.

  • PDF

Design of Median Control Chart for Nonnormally Distributed Processes (비정규분포공정(非正規分布工程)에서 메디안특수관리도(特殊管理圖)의 모형설계(模型設計))

  • Sin, Yong-Baek
    • Journal of Korean Society for Quality Management
    • /
    • v.15 no.2
    • /
    • pp.10-19
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\overline{X}$-chart, X-chart, $\widetilde{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In the Shewhart $\overline{X}$-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions.

  • PDF

Some Control Procedures Useful for One-sieded Asymmetrical Distributions

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • v.14 no.2
    • /
    • pp.76-86
    • /
    • 1985
  • Shewhart X-chart, which is most widely used in practice, is shown to be inappropriate for the cases where the process distribution is one-sided asymmetrical, and thus some nonparametric Shewhart type charts are developed instead. These schemes may be applied usefully when there is not enough information in determining the process distribution. The average run lengths are obtained to compare the efficiency of control charts for various shifts of the location parameter and for some typical one-sided asymmetrical distributions.

  • PDF

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

A Control Chart Method Using Quartiles for Asymmetric Distributed Processes (비대칭 분포를 따르는 공정에서 사분위수를 이용한 관리도법)

  • Park Sung-Hyun;Park Hee-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2006
  • This paper proposes a simple control chart method which can be practically used for asymmetric process data where the distribution is unknown. If we use the Shewhart type control charts which are based on normality assumption for the asymmetric process data, the type I error could increase as the asymmetry increases and the effectiveness of control chart to control variation decreases. To solve such problems, this paper suggests to calculate the control limits based on the quartiles. If we obtain the control limits by such quartile method, the type I error could decrease and it looks much more practical for asymmetric distributed process data.

Median Control Chart for Nonnormally Distributed Processes (비정규분포공정에서 매디안특수관리도의 모형설계와 적용연구)

  • 신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.15-25
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the X-chart, X-chart, X-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for tile more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the X-chart, the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the X-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based on a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $X^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the propose4 median chart and the X chart was also performed with these examples and the median chart turned out to be superior to the X-chart.

  • PDF

Median Control Chart for Nonnormally Distributed Processes (비정규분포공정에서 메디안특수관리도 통용모형설정에 관한 실증적 연구(요약))

  • 신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.101-106
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\bar{X}$-chart, $\bar{X}$-chart, $\bar{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart $\bar{X}$-chart. which is the most widely used one in Kora, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the $\bar{X}$-chart; the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the $\bar{X}$-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based oh a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $\chi$$^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the proposed median chart and the $\bar{X}$ chart was also performed with these examples and the median chart turned out to be superior to the $\bar{X}$-chart.

  • PDF