• 제목/요약/키워드: Shewhart-type chart

검색결과 12건 처리시간 0.028초

Optimal Designs for Attribute Control Charts

  • Chung, Sung-Hee;Park, Sung-Hyun;Park, Jun-Oh
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.97-103
    • /
    • 2003
  • Shewhart-type control charts have historically been used for attribute data, though they have ARL biased property and even are unable to detect the improvement of a process with some process parameters. So far most efforts have been made to improve the performance of attribute control charts in terms of faster detection of special causes without increasing the rates of false alarm. In this paper, control limits are proposed that yield an ARL (nearly) unbiased chart for attributes. Optimal design is also proposed for attribute control charts under a natural sense of criterion.

  • PDF

INFLUENCE OF SPECIAL CAUSES ON STOCHASTIC PROCESS ADJUSTMENT

  • Lee, Jae-June;Mihye Ahn
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.219-231
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Although original intention of process adjustment is not identifying a special cause, detection and elimination of special causes may lead to significant process improvement. In this paper, we examine the impact of special causes on process adjustment. The bias in the adjusted output process is derived for each type of special causes, and average run length (ARL) of the Shewhart chart applied to the adjusted output is computed for each special cause types. Numerical results are illustrated for the ARL of the Shewhart chart, thereupon seriousness of special causes on process adjustment is evaluated for each type of special causes.

An Economic-Statistical Design of Moving Average Control Charts

  • Yu, Fong-Jung;Chin, Hsiang;Huang, Hsiao Wei
    • International Journal of Quality Innovation
    • /
    • 제7권3호
    • /
    • pp.107-115
    • /
    • 2006
  • Control charts are important tools of statistical quality control. In 1956, Duncan first proposed the economic design of $\bar{x}-control$ charts to control normal process means and insure that the economic design control chart actually has a lower cost, compared with a Shewhart control chart. An moving average (MA) control chart is more effective than a Shewhart control chart in detecting small process shifts and is considered by some to be simpler to implement than the CUSUM. An economic design of MA control chart has also been proposed in 2005. The weaknesses to only the economic design are poor statistics because it dose not consider type I or type II errors and average time to signal when selecting design parameters for control chart. This paper provides a construction of an economic-statistical model to determine the optimal parameters of an MA control chart to improve economic design. A numerical example is employed to demonstrate the model's working and its sensitivity analysis is also provided.

비정규분포공정에서 계량치관리를 위한 메디안 특수 관리도의 모형설계와 그 적용에 관한 실용에 연구 (A Study of the effective approach method for median control chart of non-normally distributed process)

  • 신용백
    • 기술사
    • /
    • 제21권4호
    • /
    • pp.19-32
    • /
    • 1988
  • Whereas is non-symmetrical distribution manufacturing process the traditional X-chart by Shewhart is not plotted relatively on the central line but plotted on the skew of upper-hand side or lower-hand side. That is to say, for the purpose of producing either upper-specification-oriented items or lower-specification-oriented items, and when we carry out tighter control so as to have them pass only its specifications, the distribution shape naturally has a non-normal distribution. In the Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make tile plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such short comings is non-normally distributed processes, a distribution-free type of confidence interval can be used, which should be haled on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for non-normal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions, may be easily analyzed. To enhance this improvement, I proved the property of practical applications of control chart method by comparing and analyzing the case studies of practical application of special purpose control chart method, and also by introducing the new designed median control chart.

  • PDF

비정규분포공정(非正規分布工程)에서 메디안특수관리도(特殊管理圖)의 모형설계(模型設計) (Design of Median Control Chart for Nonnormally Distributed Processes)

  • 신용백
    • 품질경영학회지
    • /
    • 제15권2호
    • /
    • pp.10-19
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\overline{X}$-chart, X-chart, $\widetilde{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In the Shewhart $\overline{X}$-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions.

  • PDF

Some Control Procedures Useful for One-sieded Asymmetrical Distributions

  • Park, Chang-Soon
    • Journal of the Korean Statistical Society
    • /
    • 제14권2호
    • /
    • pp.76-86
    • /
    • 1985
  • Shewhart X-chart, which is most widely used in practice, is shown to be inappropriate for the cases where the process distribution is one-sided asymmetrical, and thus some nonparametric Shewhart type charts are developed instead. These schemes may be applied usefully when there is not enough information in determining the process distribution. The average run lengths are obtained to compare the efficiency of control charts for various shifts of the location parameter and for some typical one-sided asymmetrical distributions.

  • PDF

선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석 (Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators)

  • 오세안;예지원;김상원;이레나;김성규
    • 한국의학물리학회지:의학물리
    • /
    • 제25권3호
    • /
    • pp.185-192
    • /
    • 2014
  • 이 연구의 목적은 본원이 보유하고 있는 선형가속기들의 출력 특성을 Shewhart-type Chart, EWMA Chart, 공정능력지수 $C_p$$C_{pk}$을 이용한 통계적 분석으로 품질보증에 대한 결과를 평가하고자 한다. 측정값은 의학물리사에 의하여 2012년 9월부터 2014년 4월까지 매월 측정된 각각 치료기들(21EX, 21EX-S, Novalis Tx)의 출력측정값을 사용하였다. 치료기들의 출력 특성은 IAEA TRS-398의 가이드라인을 따랐으며, 측정 에너지는 광자선 6 MV, 10 MV, 15 MV와 전자선 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16 MeV, 20 MeV였다. 매월 측정하여 교정한 출력특성에 대한 통계학적 분석이며, 가중인자와 측정값의 관리한계의 폭은 ${\lambda}=0.10$, L=2.703로 계산되었으며, 공정능력 $C_p$$C_{pk}$는 모든 선형가속기(21EX, 21EX-S, Novalis Tx)의 모든 에너지에서 1이상이었다. Shewhart-type Chart를 통하여 출력선량의 측정값의 큰 변화점을 찾을 수 있었고, EWMA Chart를 통하여 출력선량의 측정값의 미세한 변화점을 알아 볼 수 있었다. 본원의 치료기의 공정능력지수 $C_p$$C_{pk}$를 통하여 21EX가 2.384와 2.136, 21EX-S가 1.917과 1.682, Novalis Tx가 2.895와 2.473으로 Novalis Tx가 가장 안정적이고 정확한 출력특성을 나타내고 있었다.

비대칭 분포를 따르는 공정에서 사분위수를 이용한 관리도법 (A Control Chart Method Using Quartiles for Asymmetric Distributed Processes)

  • 박성현;박희진
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.81-96
    • /
    • 2006
  • 본 연구에서는 분포를 알 수 없고 비대칭인 공정자료에 실용적으로 적용할 수 있는 간단한 관리도법을 제안하였다. 비대칭 분포를 따르는 공정자료에 정규성 가정에 기초한 슈하르트 관리도를 그대로 적용하면 비대칭성이 증가할수록 제 1종 오류를 범할 확률이 증가할 가능성이 높아지며 변동을 관리하는데 효율성이 떨어지게 된다. 이러한 문제를 해결하기 위해 본 연구에서 제시한 관리도는 관리한계선을 사분위수에 기초하여 정하는 방안을 제시하고 있다. 이러한 방법으로 관리한계선을 그릴 경우 제 1종 오류도 감소하게 되고, 비대칭분포를 하는 공정자료에 대하여 매우 실용적이라고 하겠다.

비정규분포공정에서 매디안특수관리도의 모형설계와 적용연구 (Median Control Chart for Nonnormally Distributed Processes)

  • 신용백
    • 기술사
    • /
    • 제20권3호
    • /
    • pp.15-25
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the X-chart, X-chart, X-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for tile more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the X-chart, the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the X-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based on a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $X^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the propose4 median chart and the X chart was also performed with these examples and the median chart turned out to be superior to the X-chart.

  • PDF

비정규분포공정에서 메디안특수관리도 통용모형설정에 관한 실증적 연구(요약) (Median Control Chart for Nonnormally Distributed Processes)

  • 신용백
    • 산업경영시스템학회지
    • /
    • 제10권16호
    • /
    • pp.101-106
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\bar{X}$-chart, $\bar{X}$-chart, $\bar{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart $\bar{X}$-chart. which is the most widely used one in Kora, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the $\bar{X}$-chart; the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the $\bar{X}$-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based oh a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $\chi$$^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the proposed median chart and the $\bar{X}$ chart was also performed with these examples and the median chart turned out to be superior to the $\bar{X}$-chart.

  • PDF