• Title/Summary/Keyword: Shell powder

Search Result 311, Processing Time 0.025 seconds

Characteristics of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.511-515
    • /
    • 2004
  • Fe nano powders were synthesized by plasma arc discharge (PAD) process and studied by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Pure Fe rod($99.9\%$) was used as a source of metallic vapor under argon and hydrogen mixed atmosphere. The synthesized Fe nano powders had nearly spherical shapes and core-shell type structures. The influence of process parameters on the structure and size was investigated. The powder size increased with increasing of the chamber pressure and input current. High hydrogen gas ratio in chamber atmosphere affected the particle size and amount of Fe nanopowder.

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

Antioxidant Activity and Acetylcholinesterase Inhibitory Activity of Ark shell (Scapharca broughtonii) (피조개의 항산화 활성과 Acetylcholinesterase 저해 활성)

  • Kim, Jeong-Been;Kim, Jae-Min;Lee, Young-Min;Baek, In-Seok;Lee, Seung-Cheol
    • Korean journal of food and cookery science
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2014
  • Ark shell (Scapharca broughtonii; Korean name, pijogae) is one of the most widely cultivated and consumed shellfishes in Korea. The purpose of this study was to evaluate the antioxidant activity and acetylcholinesterase inhibitory activity of ark shell. After preparing the methanol extract of ark shell powder, the extract was subsequently fractionated by hexane, diethyl ether, ethyl acetate and water. The antioxidant activity evaluated by DPPH radical scavenging activity, ABTS radical scavenging activity and reducing power was relatively higher in the water fraction; however, the activity was spread out in all fractions. Acetylcholinesterase inhibitory activity was the highest in the diethyl ether fraction. Taken together with the results of both antioxidant and acetylcholinesterase inhibitory activities, it can be suggested that different kinds of physiological compounds were contained in the ark shell.

Air Pollutant Removal Rates of Concrete Permeable Blocks Produced with Coated Zeolite Beads (코팅된 제올라이트 비드를 이용한 콘크리트 투수블록의 대기전구물질 제거율 평가)

  • Park, Jun-Seo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.153-164
    • /
    • 2023
  • The objective of this study is to examine the removal rate of air pollutants, specifically sulfur oxides (SOx) and nitrogen oxides(NOx), using concrete permeable blocks containing zeolite beads coated with materials capable of eliminating these pollutants. Titanium dioxide(TiO2) powder and coconut shell powder were utilized for the removal of SOx and NOx and were applied as coatings on the zeolite beads. Concrete permeable block specimens embedded with the coated zeolite beads were produced using an actual factory production line. Test results demonstrated that the concrete permeable block containing zeolite beads coated with coconut shell powder in the surface layer achieved SOx and NOx removal rates of 12.5% and 99%, respectively, exhibiting superior performance compared to other blocks. Additionally, the flexural strength and slip resistance were 5.3MPa and 65BPN or higher, respectively, satisfying the requirements specified in KS F 4419 and KS F 4561. Conversely, the permeability coefficient exhibited low permeability, with grades 2 and 3 before and after contaminant pollution, according to the standard for 'design, construction, and maintenance of pavement using permeable block'. In conclusion, incorporating zeolite beads coated with coconut shell powder in the surface layer enables simultaneous removal of SOx and NOx, irrespective of ultraviolet rays, while maintaining adequate flexural strength and slip resistance. However, the permeability is significantly reduced, necessitating further improvements.

Influence of Reactive Media Composition and Chemical Oxygen Demand as Methanol on Autotrophic Sulfur Denitrification

  • Qambrani, Naveed Ahmed;Oh, Sang-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1155-1160
    • /
    • 2012
  • Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfur-denitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and $7.96mg^{1/2}/l^{1/2}{\cdot}h$ were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and $6.23mg^{1/2}/l^{1/2}{\cdot}h$ were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.

Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis (반응 용기법을 이용한 InP/ZnS 양자점 합성과정에서 InP 코어의 성장기구)

  • Seo, Han wook;Jeong, Da-woon;Lee, Bin;Hyun, Seoung kyun;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.

Effect of Chamber Pressure on the Microstructure of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 미세조직에 미치는 챔버압력 영향)

  • 박우영;윤철수;김성덕;유지훈;오영우;최철진
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2004
  • Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (Fe$_{3}$O$_{4}$), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H$_2$ and gas density in the molten metal.

Effect of Cacao Bean Husk Powder on the Quality Properties of Pork Sausages

  • Choi, Jinhee;Kim, Nami;Choi, Hae Yeon;Han, Young Sil
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.742-755
    • /
    • 2019
  • Cacao bean husk (Theobroma cacao L.) contains a high level of dietary fiber and therefore can be used as raw material in food processing. The objective of the present study was to measure the physicochemical properties and sensory traits of emulsion-type pork sausages with various levels of cacao bean husk powder (0.25%, 0.5%, 0.75%, 1%, and 2%). The moisture content in cooked sausages increased as the level of cacao bean husk power increased, whereas the protein content decreased (p<0.05). With respect to color, as the level of cacao bean husk power increased, there was a decrease in lightness and yellowness, but there was a considerable increase in redness (p<0.05). Cacao bean husk powder exhibited a positive effect on emulsion stability and apparent viscosity. In the sensory evaluation, increased level of cacao bean husk increased flavor acceptability; the 0.75% and 1% treatment groups showed significantly high overall acceptability (p<0.05). The thiobarbituric acid reactive species content of cooked sausages indicated that with the addition of cacao bean husk powder significantly inhibited lipid oxidation in the sausages during refrigerated storage (p<0.05). Overall, the findings of the present study suggest that adding 0.75% and 1% cacao bean husk powder as a natural ingredient in sausages can help develop meat products with excellent qualities.

Investigation of the Korean Traditional Hobun(Oyster shell W.) Manufacturing Technique : Centering on Calcination Method (전통 호분(합분) 제조기술 연구 : 소성방법을 중심으로)

  • Lee, Han-Hyoung;Kim, Soon-Kwan;Kim, Ho-Jeong;Jeong, Hye-Young
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.103-118
    • /
    • 2008
  • Hobun(Oyster shell W.) is a traditional material used as extender and white pigment from ancient times. The production method of it, however, has been discontinued. We have studied the traditional production method of Hobun through calcination of oyster shell, which is one of the traditional ways for preparing Hobun. Our work has the important meaning in that we can reproduce the manufacturing method of the discontinued traditional material and also it provides a solid background knowledge to stabilize the production and supply of Hobun for the cultural asset repairing materials. The result can be summarized as followings: The production processes of Hobun by calcination method are divided into 4 steps - calcination ${\rightarrow}$ slaking(pulverization) ${\rightarrow}$ separating fine powder by submergence in water ${\rightarrow}$ drying. In calcination step, the temperature is required to exceed $700^{\circ}$ to get pure white color of Hobun, since organic materials in the shell cause the final powder to be less white below $600^{\circ}$. And the calcination methods produce significant amount of calcium hydroxide, which is incongruent for pigment materials without additional treatments. The experimental study also demonstrated that the additional treatment process introduced in traditional paintings can be a probable process since the calcium of potassium hydroxide is observed to be promoted by this treatment. It is also concluded that, the calcination method of Hobun is appropriate for a small amount and high quality production.

  • PDF