Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.1.6

Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis  

Seo, Han wook (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Jeong, Da-woon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Lee, Bin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Hyun, Seoung kyun (Department of Material progress and Engineering, Inha University)
Kim, Bum Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
Publication Information
Journal of Powder Materials / v.24, no.1, 2017 , pp. 6-10 More about this Journal
Abstract
This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.
Keywords
InP; Quantum dots; Kinetic growth mechanism; Core/Shell; Migration coalescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354.   DOI
2 H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin: J. Korean Powder Metall. Inst., 19 (2012) 451.   DOI
3 J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger: Chem. Biol., 12 (2005) 1227.   DOI
4 O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966.   DOI
5 S. Haubold, M. Haase, A. Kornowski and H. Weller : Chem. Phys. Chem., 2 (2001) 331.   DOI
6 S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. B. de Castro, M. Haase, H. Weller and T. Moller : J. Chem. Phys., 123 (2005) 084706.   DOI
7 W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi and H. Yang: J. Nanopart. Res., 15 (2013) 1750.   DOI
8 W. W. Yu, L. H. Qu, W. Guo and X. G. Peng: Chem. Mater., 15 (2003) 2854.   DOI
9 O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik: J. Phys. Chem. B, 101 (1997) 4904.   DOI
10 K. Fuwa and B. L. Valle: Anal. Chem., 35 (1963) 942.   DOI
11 J. D. Dow and R. E. Allen: J. Vac. Sci. Technol. B, 20 (1982) 659.   DOI
12 B. S. Kim, J. S. Lee, S. T. Oh, Y. H. Choa, T. Sekino and K. Niihara: J. Korean Powder Metall. Inst., 7 (2000) 237.
13 P. J. F. Harris, E. D. Boyes and J. A. Cains: J. Catal., 82 (1983) 127.   DOI
14 U. T. D. Thuy, A. Maurice, N. Q. Liem and P. Reiss: Dalton Trans., 42 (2013) 12606.   DOI
15 R. Xie, Z. Li and X. Peng: J. Am. Chem. Soc., 131 (2009) 15457.   DOI