DOI QR코드

DOI QR Code

Growth mechanism of InP and InP/ZnS synthesis using colloidal synthesis

반응 용기법을 이용한 InP/ZnS 양자점 합성과정에서 InP 코어의 성장기구

  • Seo, Han wook (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Jeong, Da-woon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Lee, Bin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Hyun, Seoung kyun (Department of Material progress and Engineering, Inha University) ;
  • Kim, Bum Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 서한욱 (한국생산기술연구원 한국희소금속산업센터) ;
  • 정다운 (한국생산기술연구원 한국희소금속산업센터) ;
  • 이빈 (한국생산기술연구원 한국희소금속산업센터) ;
  • 현승균 (인하대학교 재료공정공학부) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업센터)
  • Received : 2017.02.08
  • Accepted : 2017.02.21
  • Published : 2017.02.28

Abstract

This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.

Keywords

References

  1. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  2. H. S. Hong, K. S. Park, C. G. Lee, B. S. Kim, L. S. Kang and Y. H. Jin: J. Korean Powder Metall. Inst., 19 (2012) 451. https://doi.org/10.4150/KPMI.2012.19.6.451
  3. J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger: Chem. Biol., 12 (2005) 1227. https://doi.org/10.1016/j.chembiol.2005.09.008
  4. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
  5. S. Haubold, M. Haase, A. Kornowski and H. Weller : Chem. Phys. Chem., 2 (2001) 331. https://doi.org/10.1002/1439-7641(20010518)2:5<331::AID-CPHC331>3.0.CO;2-0
  6. S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. B. de Castro, M. Haase, H. Weller and T. Moller : J. Chem. Phys., 123 (2005) 084706. https://doi.org/10.1063/1.2004901
  7. W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi and H. Yang: J. Nanopart. Res., 15 (2013) 1750. https://doi.org/10.1007/s11051-013-1750-y
  8. W. W. Yu, L. H. Qu, W. Guo and X. G. Peng: Chem. Mater., 15 (2003) 2854. https://doi.org/10.1021/cm034081k
  9. O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas and A. J. Nozik: J. Phys. Chem. B, 101 (1997) 4904. https://doi.org/10.1021/jp9704731
  10. K. Fuwa and B. L. Valle: Anal. Chem., 35 (1963) 942. https://doi.org/10.1021/ac60201a006
  11. J. D. Dow and R. E. Allen: J. Vac. Sci. Technol. B, 20 (1982) 659. https://doi.org/10.1116/1.571620
  12. B. S. Kim, J. S. Lee, S. T. Oh, Y. H. Choa, T. Sekino and K. Niihara: J. Korean Powder Metall. Inst., 7 (2000) 237.
  13. P. J. F. Harris, E. D. Boyes and J. A. Cains: J. Catal., 82 (1983) 127. https://doi.org/10.1016/0021-9517(83)90124-0
  14. U. T. D. Thuy, A. Maurice, N. Q. Liem and P. Reiss: Dalton Trans., 42 (2013) 12606. https://doi.org/10.1039/c3dt50526j
  15. R. Xie, Z. Li and X. Peng: J. Am. Chem. Soc., 131 (2009) 15457. https://doi.org/10.1021/ja9063102