• Title/Summary/Keyword: Shell Mode Vibration

Search Result 138, Processing Time 0.024 seconds

Reactor Noise Analyses in Yonggwang 3&4 Nuclear Power Plants (영광 3&4 호기의 원자로잡음신호 해석)

  • Park, Jin-Ho;Ryu, Jeong-Soo;Sim, Woo-Gun;Kim, Tae-Ryong;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.679-686
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector signals have been performed to monitor the vibration modes of reactor internals such as fuel assembly and Core Support Barrel in Yonggwang 3&4 Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. It has been found that the first vibration mode frequency of the fuel assembly was around 2.5 Hz, the beam and shell mode frequencies of CSB(Core Support Barrel) 8 Hz and 14.5 Hz, respectively. Also the analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals.

  • PDF

Vibro-acoustic modelling of immersed cylindrical shells with variable thickness

  • Wang, Xianzhong;Lin, Hongzhou;Zhu, Yue;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.343-353
    • /
    • 2020
  • Based on the Precise Transfer Matrix Method (PTMM), the dynamic model is constructed to observe the vibration behaviour of cylindrical shells with variable thickness by solving a set of first-order differential equations. The free vibration of stiffened cylindrical shells with variable thickness can be obtained to compare with the exact solution and FEM results. The reliability of the present method of free vibration is well proved. Furthermore, the effect of thickness on the vibration responses of the cylindrical shell is also discussed. The acoustic response of immersed cylindrical shells is analyzed by a Pluralized Wave Superposition Method (PWSM). The sound pressure coefficient can be gained by collocating points along the meridian line to satisfy the Neumann boundary condition. The mode convergence analysis of the cylindrical shell is carried out to guarantee calculation precision. Also, the reliability of the present method on sound radiation is verified by comparing with experimental results and numerical results.

Study on the influence of hold-down spring on the vibration characteristics of core barrel

  • Tiancai Tan;Lei Sun;Litao Liu;Jie Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3252-3259
    • /
    • 2023
  • The influence of hold-down spring (HDS) on the vibration characteristics of core barrel is studied in this paper. First, the vibration characteristics experiment of core barrel was carried out with four type of different hold-down spring. These hold-down springs represent the same hold-down force under different spring stiffness and different hold-down force under the same spring stiffness. And then a new finite element method for researching the influence of hold-down spring on the vibration characteristics of core barrel was presented. This new method could consider the influence of the hold-down force and the spring stiffness at the same time. The results suggest that, the hold-down force and friction have greater influence on the vibration characteristics of core barrel than the spring stiffness, and the influence is nonlinear. The influence of the boundary condition on beam mode is greater than that on shell mode for core barrel.

Static and free vibration behaviour of orthotropic elliptic paraboloid shells

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • In this paper the influence of aspect ratio, height ratio and material angle on static and free vibration behaviour of orthotropic elliptic paraboloid shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. A parametric study is carried out for static and free vibration response of orthotropic elliptic paraboloid shells with respect to displacements, internal forces, fundamental frequencies and mode shapes by varying the aspect and height ratios, and material angle.

Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method (비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

Vibration Analysis of Partially Fluid-filled Continuous Cylindrical Shells with Intermediate Supports (유체가 부분적으로 채워진 내부지지 연속 원통셸의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.244-252
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics for the partially fluid-filled continuous cylindrical shells with the intermediate supports. The intermediate supports are simulated by two types of artificial springs : the translational spring for the translation for each direction and the rotational spring for a rotation. The springs are continuously distributed along the circumferential direction. By allowing the spring stiffness to become very high compared to the stiffness of the structure, the rigid intermediate supports are approximated. In the theoretical procedure, the Love's thin shell theory is adopted to formulate the theoretical model. The frequency equation of the continuous cylindrical shell is derived by the Rayleigh-Ritz approach based on the energy method. Comparison and convergence studies are carried out to verify and establish the appropriate number of series term and the artificial spring stiffness to produce results with an acceptable order of accuracy. The effect of intermediate supports, their positions and fluid level on the natural frequencies and mode shapes are studied.

Vibration Characteristics of Steam Generator U-tubes with Defect (결함을 가진 증기발생기 U-튜브의 진동특성)

  • 조종철;정명조;김웅식;김효정;김태형
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.400-408
    • /
    • 2003
  • This paper investigates the vibration characteristics of steam generator (SG) U-tubes with defect. The operating SG shell-side flow field conditions for determining the fluidelastic instability parameters such as added mass are obtained from three-dimensional SG flow calculation. Modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, addressed is the effect of the internal pressure on the vibration characteristics of the tube.

Nonlinear dynamic stability and vibration analysis of sandwich FG-CNTRC shallow spherical shell

  • Kamran Foroutan;Akin Atas;Habib Ahmadi
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.95-107
    • /
    • 2024
  • In this article, the semi-analytical method was used to analyze the nonlinear dynamic stability and vibration analysis of sandwich shallow spherical shells (SSSS). The SSSS was considered as functionally graded carbon nanotube-reinforced composites (FG-CNTRC) with three new patterns of FG-CNTRC. The governing equation was obtained and discretized utilizing the Galerkin method by implementing the von Kármán-Donnell nonlinear strain-displacement relations. The nonlinear dynamic stability was analyzed by means of the fourth-order Runge-Kutta method. Then the Budiansky-Roth criterion was employed to obtain the critical load for the dynamic post-buckling. The approximate solution for the deflection was represented by suitable mode functions, which consisted of the three modes of transverse nonlinear oscillations, including one symmetrically and two asymmetrical mode shapes. The influences of various geometrical characteristics and material parameters were studied on the nonlinear dynamic stability and vibration response. The results showed that the order of layers had a significant influence on the amplitude of vibration and critical dynamic buckling load.

Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM

  • Dogan, Ali;Arslan, H. Murat
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.303-324
    • /
    • 2012
  • This paper presents the mode-shape analysis of the cross-ply laminated composite cylindrical shallow shells. First, the kinematic relations of strains and deformation are given. Then, using Hamilton's principle, governing differential equations are developed for a general curved shell. Finally, the stress-strain relation for the laminated, cross-ply composite shells are obtained. By using some simplifications and assuming Fourier series as a displacement field, the governed differential equations are solved by the matrix algebra for shallow shells. Employing the computer algebra system called MATHEMATICA; a computer program has been prepared for the solution. The results obtained by this solution are compared with the results obtained by (ANSYS and SAP2000) programs, in order to verify the accuracy and reliability of the solution presented.