Vibro-acoustic modelling of immersed cylindrical shells with variable thickness |
Wang, Xianzhong
(Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education)
Lin, Hongzhou (School of Transportation, Wuhan University of Technology) Zhu, Yue (School of Transportation, Wuhan University of Technology) Wu, Weiguo (Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education) |
1 | Ventsel, E., Naumenko, V., Strelnikova, E., Yeseleva, E., 2010. Free vibrations of shells of revolution filled with a fluid. Eng. Anal. Bound. Elem. 34 (10), 856-862. DOI |
2 | Wang, X., Wu, W., Yao, X., 2015. Structural and acoustic response of a finite stiffened conical shell. Acta Mech. Solida Sin. 28 (2), 200-209. DOI |
3 | Wang, X., Guo, W., 2016a. Dynamic modeling and vibration characteristics analysis of submerged stiffened combined shells. Ocean Eng. 127, 226-235. DOI |
4 | Wang, X.-z., Jiang, C.-b., Xu, R.-y., 2016b. Structural and acoustic response of a finite stiffened submarine hull. China Ocean Eng. 30 (6), 898-915. DOI |
5 | Zhang, X., 2002. Frequency analysis of submerged cylindrical shells with the wave propagation approach. Int. J. Mech. Sci. 44 (7), 1259-1273. DOI |
6 | Liu, C.-H., Chen, P.-T., 2009. Numerical analysis of immersed finite cylindrical shells using a coupled BEM/FEM and spatial spectrum approach. Appl. Acoust. 70 (2), 256-266. DOI |
7 | Caresta, M., Kessissoglou, N.J., 2009. Structural and acoustic responses of a fluidloaded cylindrical hull with structural discontinuities. Appl. Acoust. 70 (7), 954-963. DOI |
8 | El-Kaabazi, N., Kennedy, D., 2012. Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the WittrickeWilliams algorithm. Comput. Struct. 104, 4-12. DOI |
9 | Jin, G., Ma, X., Liu, Z., Xuan, L., 2017. Dynamic analysis of general rotationally symmetric built-up structures using a modified fourier spectral element approach. J. Vib. Acoust. 139 (2), 021012. DOI |
10 | Laulagnet, B., Guyader, J., 1989. Modal analysis of a shell's acoustic radiation in light and heavy fluids. J. Sound Vib. 131 (3), 397-415. DOI |
11 | Petyt, M., Lim, S., 1978. Finite element analysis of the noise inside a mechanically excited cylinder. Int. J. Numer. Methods Eng. 13 (1), 109-122. DOI |
12 | Sandman, B., 1976. Fluid-loading influence coefficients for a finite cylindrical shell. J. Acoust. Soc. Am. 60 (6), 1256-1264. DOI |
13 | Stepanishen, P.R., 1982. Modal coupling in the vibration of fluid-loaded cylindrical shells. J. Acoust. Soc. Am. 71 (4), 813-823. DOI |
14 | Tang, D., Yao, X., Wu, G., Peng, Y., 2017. Free and forced vibration analysis of multistepped circular cylindrical shells with arbitrary boundary conditions by the method of reverberation-ray matrix. Thin-Walled Struct. 116, 154-168. DOI |
15 | Tottenham, H., Shimizu, K., 1972. Analysis of the free vibration of cantilever cylindrical thin elastic shells by the matrix progression method. Int. J. Mech. Sci. 14 (5), 293-310. DOI |