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a b s t r a c t

Based on the Precise Transfer Matrix Method (PTMM), the dynamic model is constructed to observe the
vibration behaviour of cylindrical shells with variable thickness by solving a set of first-order differential
equations. The free vibration of stiffened cylindrical shells with variable thickness can be obtained to
compare with the exact solution and FEM results. The reliability of the present method of free vibration is
well proved. Furthermore, the effect of thickness on the vibration responses of the cylindrical shell is also
discussed. The acoustic response of immersed cylindrical shells is analyzed by a Pluralized Wave Su-
perposition Method (PWSM). The sound pressure coefficient can be gained by collocating points along
the meridian line to satisfy the Neumann boundary condition. The mode convergence analysis of the
cylindrical shell is carried out to guarantee calculation precision. Also, the reliability of the present
method on sound radiation is verified by comparing with experimental results and numerical results.
© 2019 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Stiffened cylindrical shells with high compressive strength are
widely introduced into engineering structures, especially in the
marine field. The radiated noise of submarine which results from
structure vibration is a very important issue. Therefore, there are
significant theoretical value and engineering meaning to study the
vibro-acoustic behaviour of submerged stiffened cylindrical shells.
A great number of theoretical researches have been done on the
vibration and radiated noise of cylindrical shells. Tottenham and
Shimizu (1972) put forward a transfer matrix method to analyze
the free vibration characteristics of a cylindrical shell, but the
method is hard to analyze the dynamic response of the shell in
fluid. Sandman (1976) investigated the acoustic loading and ob-
tained the generalized velocity distribution. The influence of the
baffle was observed in the axial pressure variation along the sur-
face. After combining modal superposition with radiation imped-
ance method, Stepanishen (1982) developed an approach to
evaluate the vibration and sound radiation of a finite cylindrical

shell with infinite rigid baffles in fluid. Both the above models
should be modified when the endplates are active radiators.
Laulagnet and Guyader (1989) explored the issues of how finite
cylindrical shell submerged in light and heavy fluids affected the
sound radiation. Under the assumption of rigid baffles on both
ends, some researchers also analyze the radiated noise of cylin-
drical shells. Up to now, there are many analysis methods including
wave propagation method (Caresta and Kessissoglou, 2009),
modified variational method (Jin et al., 2017), transfer matrix
method (Wang et al., 2015), Wittrick-Williams algorithm (El-
Kaabazi and Kennedy, 2012) and reverberation-ray matrix (Tang
et al., 2017) applied to solve the vibro-acoustic problem of the cy-
lindrical shell. Nevertheless, most of the researchers have been
concentrating on cylindrical shells of equal thickness, and there are
few applications of variable thickness shells in vibro-acoustic
analysis. Obliviously, it's difficult to copy with the fluid load and
discontinuity of the stiffened shell.

Considering the complexity of the governing equations of the
cylindrical shell, it's hard to obtain the vibration and acoustic
response directly of the cylindrical shell with variable thickness by
an analytical method. Many numerical methods such as finite
element method (Petyt and Lim, 1978), boundary element method
(Ventsel et al., 2010) and coupled finite element and boundary
element method (Liu and Chen, 2009) have potential advantages to
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analyze the dynamic behaviour of arbitrary complex elastic struc-
tures. However, the solution accuracy of these numerical methods
relies heavily on meshed elements and frequency band.

The aim of the present work is to predict the vibro-acoustic
response of immersed stiffened cylindrical shell with variable
thickness. After combining a precise transfer matrix method (Wang
et al., 2015) and a pluralized wave superposition method (Wang
et al., 2016a,b), the authors develop an approach to observe the
natural frequencies and radiated noise of cylindrical shells. The
convergence analysis of modes (m, n) of the cylindrical shell is
carried out to gain the excellent convergence guarantee and
calculation precision. The validity and reliability of the present
method for predicting free vibration are well proofed by comparing
the natural frequencies with analytical results and FEM results.

Furthermore, the effect of variable thickness on the free vibration of
the cylindrical shell is discussed. The effectiveness of the present
method for evaluating sound radiation of immersed cylindrical
shells is also demonstrated by comparing the sound pressure level
with experiment results and numerical results.

2. The dynamic model

2.1. The thin shell

A diagrammatic drawing of the stiffened immersed cylindrical
shell is shown in Fig. 1. h(x), L, and R denote the thickness, length
and height of the cylindrical shell, respectively. A transfer matrix
differential equation form of Flügge equations can be obtained

dZðxÞ =dx¼UðxÞZðxÞþ FðxÞ � pðxÞ (1)

whereUðxÞ is the field transfer matrix of the thin shell. The nonzero
elements of UðxÞ can be referred to Wang and Guo (2016). ZðxÞ ¼
ff~u ~v ~w ~j ~Ms ~Vs

~Ssq ~Nsg. u, v, w, j denote the
axial, circumferential, radial displacements, angular angle, respec-
tively. FðxÞ and pðxÞ are the dimensionless external force vector and

sound pressure load vector. Ms, Vs, Ssq, Ns denote the moment,
radial, circumferential and axial forces, respectively. The symbols
with over-tilde represent the dimensionless variables. These
dimensionless state vectors including four end genetic forces and
four displacement functions are

ðu;w;jÞ¼h
X1

b¼0

X
n
ð~u; ~w; ~j =RÞsin

�
nqþap

2

�
; v¼h

�
X1

b¼0

X
n
~vcos

�
nqþap

2

�
(2a)

where a ¼ 1 denotes the symmetric mode, a ¼ 0 denotes the anti-
symmetric mode. Bending rigidity K equals Eh3 =12ð1 � n2Þ, and E,
n, h are Young's modulus, Poisson's ratio and thickness of the shell
respectively.

2.2. The ring-stiffener

The vibration of the stiffener could result in four kinds of forms
of vibration of the shell, two of which are movements within the
plane, namely flexural and extending vibration within the plane,
and the other are flexural and torsional movements out of the
plane. The ring-stiffeners are laid on the internal surface of the
shell. If the kth stiffener and the cylindrical shell are welded
together at a position xk, there are differences of internal forces

between the state vector ZðxLkÞ at the left end xLk and the state vector

ZðxRk Þ at the right end xRk . The state vector ZðxkÞ satisfies

Z
�
xRk

�
¼TrkZ

�
xLk

�
(3)

where ZðxLkÞ and ZðxRk Þ denote state vectors of both ends,

Fig. 1. Scheme for the immersed stiffened cylindrical shell.

ðNs;Vs;MsÞ¼ K
R2
X1

b¼0

X
n
ð~Ns; ~Vs; ~MsRÞsin

�
nqþap

2

�
; Ssq ¼

K
R2
X1

b¼0

X
n

~Ssqcos
�
nqþap

2

�
(2b)

X. Wang et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 343e353344



respectively. The effect of the ring-stiffener plate is considered only
to change the transfer relation of state vectors at the left and right
ends of the action point. Hence, Trk is obtained in a point transfer
matrix form, the nonzero elements of which is given in Appendix A.

2.3. The added mass

The position of the ith added mass in the shell is located at (x0i,
q0i), i ¼ 1,2, …,N, the mass of which is mi. By dealing with the ith
added mass midðx0iÞdðq0iÞ with an orthogonal transformation, one
obtains

Table 1
Comparison of natural frequencies of the cylindrical shell in vacuo (unit:Hz).

n ¼ 0 n ¼ 1

Present method Exact solution Error Present method Exact solution Error

m ¼ 1 8011.2 8011.06 0.00% 4944.0 4943.79 0.00%
m ¼ 2 8205.4 8204.57 �0.01% 7309.7 7308.55 �0.02%
m ¼ 3 8288.3 8286.39 �0.02% 7910.6 7908.31 �0.03%
m ¼ 4 8453.6 8450.23 �0.04% 8256.5 8252.68 �0.05%
m ¼ 5 8780.3 8775.06 �0.06% 8670.0 8664.38 �0.06%
m ¼ 6 9341.2 9334.10 �0.08% 9281.6 9274.18 �0.08%

n ¼ 2 n ¼ 3

Present method Exact solution Error Present method Exact solution Error

m ¼ 1 2835.5 2833.37 �0.08% 1749.2 1741.54 �0.44%
m ¼ 2 5664.3 5661.85 �0.04% 4243.4 4237.93 �0.13%
m ¼ 3 6998.5 6994.89 �0.05% 5951.6 5945.51 �0.10%
m ¼ 4 7737.3 7732.17 �0.07% 7062.8 7055.49 �0.10%
m ¼ 5 8370.5 8363.75 �0.08% 7962.9 7954.11 �0.11%
m ¼ 6 9119.3 9110.79 �0.09% 8898.5 8888.28 �0.11%

Fig. 2. Convergence analysis of mode (m, n) on the vibro-acoustic response.
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mðxi; qiÞ¼ dðx0iÞ
X1

a¼0

X∞

n¼0

mni sin
�
nqþap

2

�
(4)

where mni ¼ m0
εn
2p sin

�
nq0 þap

2

�
, εn ¼

�
1;n ¼ 0
2;ns0 .

There are differences mniu
2XðX¼ u; v;w;jÞ between the state

vector ZðxLsÞ and the state vector ZðxRs Þ at a position xs ¼ x0i=R. The
state vector ZðxsÞ satisfies

Z
�
xRs

�
¼PniZ

�
xLs

�
(5)

where ZðxLkÞ and ZðxRkÞ denote state vectors at the left end xLs and the

right end xRs , respectively. Pni is the point transfer matrix of ith
added mass.

2.4. The exciting force

A concentrated force f ðx; qÞ is introduced to act on the point (x0,
q0) of the stiffener or the shell. An orthogonal transformation is
carried out to deal with the formula f(x,q) ¼ f0dðx0Þdðq0Þ. After
multiplying the formula by

P∞
p¼0sin

�
pqþap

2

�
sin
�
nqþap

2

�
and

integrating from 0 to 2p, one obtains

Table 2
Comparison of natural frequencies of the immersed cylindrical shell (unit:Hz).

Present method Wave propagation method FEM Error

(1,2) 4.94 4.92 4.95 0.41%
(1,3) 8.91 9.06 8.95 1.66%
(2,2) 10.86 10.71 10.66 1.40%
(2,3) 11.56 11.24 11.54 2.85%
(3,3) 14.68 14.7 14.73 0.14%
(1,4) 18.24 18.68 18.26 2.36%
(2,4) 18.68 19.14 18.71 2.40%
(3,4) 20.14 20.37 20 1.13%

Table 3
Comparison of natural frequencies of the cylindrical shell with variable thickness
(unit:Hz).

m ¼ 1 m ¼ 2 m ¼ 3 m ¼ 4 m ¼ 5

Present method n ¼ 0 7971.49 8222.84 8371.82 8708.67 9367.78
n ¼ 1 5448.93 7326.32 8007.15 8529.87 9281.85
n ¼ 2 2799.47 5699.95 7135.97 8073.98 9060.99
n ¼ 3 1826.50 4351.26 6180.04 7518.60 8795.40
n ¼ 4 1679.89 3568.28 5451.98 7055.56 8594.51

FEM n ¼ 0 7971.30 8164.00 8302.30 8625.60 9271.00
n ¼ 1 5416.20 7277.90 7944.50 8452.00 9189.00
n ¼ 2 2782.70 5665.50 7086.60 8007.90 8977.60
n ¼ 3 1803.50 4321.20 6139.30 7462.70 8720.80
n ¼ 4 1641.40 3531.20 5409.60 7001.30 8521.80

Error n ¼ 0 0.00% 0.72% 0.84% 0.96% 1.04%
n ¼ 1 0.60% 0.67% 0.79% 0.92% 1.01%
n ¼ 2 0.60% 0.61% 0.70% 0.83% 0.93%
n ¼ 3 1.28% 0.70% 0.66% 0.75% 0.86%
n ¼ 4 2.34% 1.05% 0.78% 0.78% 0.85%

Fig. 3. Variations of natural frequencies of the cylindrical shell with various coefficient B.
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f ðx; qÞ¼ dðx0Þ
X1

a¼0

X∞

n¼0
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2

�
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where fn ¼ f0
εn
2p sin

�
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2

�
, εn ¼

�
1;n ¼ 0
2;ns0 .

2.5. The vibrational responses

Case I. If there is no ring rib and addedmass in the jth segment (xj
~ xjþ1), the relation between ZðxjÞ and Zðxjþ1Þ can be constructed as

Z
�
xjþ1

�¼ exp
�
U
�
xjþ1 � xj

��
Z
�
xj
�þ

ðxjþ1

xj

exp
�
U
�
xjþ1 � t

��
rðtÞdt

(7)

Case II. If there is a ring rib located in the jth segment (xj ~ xjþ1),

the relation between ZðxjÞ and Zðxjþ1Þ can be constructed as

Z
�
xjþ1

�¼ e

ðxjþ1

xi

UðtÞdt
Tri

 
e

ðxi

xj

UðtÞdt
Z
�
xj
�þ

ðxi

xj

e

ðxi

t

UðsÞds
f ðtÞdt

!

þ
ðxjþ1

xi

e

ðxjþ1

t

UðsÞds
f ðtÞdt

(8)

Case III. If there is an added mass located in the jth segment (xj ~
xjþ1), the relation between ZðxjÞ and Zðxjþ1Þ can be constructed as

Fig. 4. Variations of natural frequencies of the cylindrical shell versus the coefficient B.
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The relation between ZðxjÞ and Zðxjþ1Þ can be simplified as

Z
�
xjþ1

�¼T jþ1Z
�
xj
�þ Pjþ1; j ¼ 1; :::;N � 1 (10)

where T jþ1 ¼ e

R xjþ1
xj

UðtÞdt
, Pjþ1 ¼ R xjþ1

xj
e½Uðxjþ1�tÞ�rðtÞdt in Case I;

T jþ1 ¼ � e
R xjþ1
xi

UðtÞdt
Trie

R xi
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UðtÞdt
,

Pjþ1 ¼ e
R xjþ1
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UðtÞdt
Tri

R xi
xj
e
R xi
t

UðsÞdsf ðtÞdt þ R xjþ1

xi
e
R xjþ1
t

UðsÞdsf ðtÞdt in

Case II; T jþ1 ¼ � e
R xjþ1
xi

UðtÞdt
Pnie

R xi
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UðtÞdt
,

Pjþ1 ¼ e
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R xi
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UðsÞdsf ðtÞdtþ R xjþ1

xi
e
R xjþ1
t

UðsÞdsf ðtÞdtin
Case III.

According to the ideas of finite element assembling mass matrix

and rigidity matrix, Eq. (10) is assembled and the equations of the
whole structure can be transferred into

2
66664

�T2 I8 0 0 0 0
0 �T3 I8 0 0 0
0 0 �T4 I8 0 0
0 0 0 ::: I8 0
0 0 0 0 �TN I8

3
77775

8>>>><
>>>>:

Zðx1Þ
Zðx2Þ
Zðx3Þ

«
ZðxNÞ

9>>>>=
>>>>;

¼

8>>><
>>>:

P2
P3
P4
«
PN

9>>>=
>>>;

(11)

Constrained stiffness constants ku, kv, kw and kq are employed to
restrain displacements in the axial, tangential, radial and rotational
directions at both ends of the cylindrical shell. The dimensionless
internal forces and displacements at both ends satisfy the
relationship

~Mx ¼ekq~f; ~Sxq ¼ekw ~w; ~Vx ¼ekv~v; ~Nx ¼eku~u (12)

where eks ¼ ksR2h =K , s ¼ u; v;w; q are dimensionless stiffness co-
efficients. Classic boundary conditions including S (Simply-sup-
port), C (Clamped) and F (Free) are special cases of E (Elastic
restrain) boundary conditions. When the dimensionless stiffness
coefficients are generally taken as 106, the displacement result at
the end tends to be zero which is approximately equivalent to the
clamped boundary. The not restrained displacement is Free
boundary if the dimensionless stiffness coefficient is set as 0. By
identifying the line numbers of the determinate state vectors in
Zðx1Þ, ZðxNÞ, deleting the corresponding row and column in the
coefficient matrix in Eq. (11) and expanding the coefficient matrix

Fig. 5. Variations of natural frequencies of the cylindrical shell with various coefficient A.
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determinant, the dispersion equation of the cylindrical shell can be
constructed to gain the natural frequencies of the stiffened cylin-
drical shell.

2.6. The acoustic responses

Avirtual interior surface S0 is constructedwith virtual sources by
shrinking the real surface S. The fluid load p is expressed as:

pðPÞ¼∬ S0sðOÞKðP;OÞdS0 (13)

where P and O denote the external field point and source point,
respectively. sðOÞ denotes the unknown distribution function of the
virtual source strength density. The source strength function K(P,O)
and the distribution function sðOÞ can be expanded into a complex
Fourier series. The distance d(P,O) equalsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2P þ r2O � 2rPrO cosðqP � qOÞ þ ðzP � zOÞ2

q
. A complex distance d

satisfying ð1þigÞd is employed to avoid the non-uniqueness solu-
tion at certain characteristic frequencies. The integral interval

Fig. 6. Variations of natural frequencies of the cylindrical shell versus the coefficient A.

Fig. 7. Comparison of sound pressure level of Model Ⅳ.

Fig. 8. Comparison of sound pressure level of Model Ⅴ.
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ð0eL0Þ and the integral interval ð0e2pÞ are divided into M and N
equal divisions respectively, Eq. (13) yields

pðPÞ¼
Xþ∞

n¼�∞

Xþ∞

m¼�∞
cmnKmnð~PÞeinqP (14)

where Kmnð~PÞ ¼ 2pL0
MN
PM�1

k1¼0
PN�1

k2¼0K½~P; k1; k2�rLOeimk12pM e�ink22pN is the
generalized sound pressure load. L0 denotes the meridian line
length of the virtual source surface. Kmnð~PÞ can be obtained by the
discrete Fourier transform method quickly and accurately.

By expanding the potential function into a complex Fourier se-
ries, the normal derivative of fluid load p is expressed as

vpðPÞ
vnP

¼
Xþ∞

n¼�∞

Xþ∞

m¼�∞
cmnK 0

mnð~P; ~OÞeinqP (15)

The whole points (xi, i ¼ 1, 2, …, m) on the meridian line of real
surface S should satisfy the Neumann boundary condition, which
yields

K 0
ncn ¼ r0u

2wn; n2ð�∞eþ∞Þ (16)

where wn ¼ fwnðx1Þ / wnðxm�1Þ wnðxmÞ gT and cn ¼

c�m;n / cm�1;n cmn

�T . r0 denotes the density of the fluid
media. u denotes the circular frequency.

The radial displacement w satisfying the linear superposition
principle, one can get

wnð~PÞ¼wf
nð~PÞ þ

Xþ∞

m¼�∞
cmnw

p
mnð~PÞ (17)

where wf
nð~PÞ denotes the radial displacement under the external

load FðxÞ. wp
mnðxÞ denotes the radial displacement under general-

ized sound pressure load Kmn.
After collocating points ~P on the meridian line of the surface S

and substituting Eq. (17) into Eq. (16), one can get

Uncn ¼Qn;n2ð�∞eþ∞Þ (18)

where Uq�2mþ1 ¼ K 0
mnð~PÞ� r0u

2wp
mnð~PÞ, Q q�1 ¼ r0u

2wf
nð~PÞ.

Moore-Penrose generalized inverse method is employed to solve
the unknown coefficient vector cn. Then the radiated noise of
immersed cylindrical shells is obtained by the pluralized wave

superposition method (PWSM).

3. Results

3.1. Convergence analysis

The convergence of numerical results involves the intercepting
mode error. The geometric parameters of a simply-supported cy-
lindrical shell are given as follows: radius R ¼ 0.2 m, length
L ¼ 0.6 m, thickness h ¼ 3 mm, size of the internal stiffener is
2 mm� 30 mm, stiffener interval is 0.2 m. The radial unit force acts
on the position (L/20o, 0.2 m) (cylindrical coordinate) of the inter-
nal surface. The measuring point is located at the position (L/20o,
1.2 m). The frequency domain is 40~4 kHz and the frequency step is
40 Hz. The shell and stiffener are made of steel, with density
r ¼ 7850 kg/m3, Poisson's ratio m ¼ 0.3, Young's modulus of elas-
ticity E ¼ 2.06 � 1011 Pa, and damping loss factor h ¼ 0.01. The
sound speed of the fluid c0 ¼ 1500 m/s and the density
r0 ¼ 1000 kg/m3.

As shown in Fig. 2, a convergence is brought about with few
modes in low frequency range. Moremodes are employed to ensure
high accuracy as the frequency increases. The number of axial
wavenumber m and circumferential wavenumber n take 0e5 and
1e35 respectively in order to realize the accuracy guarantee in the
calculated frequency range.

3.2. The free vibration

a) Comparison: Model I

In order to prove the effectiveness of the present method, the
geometric and physical parameters of the cylindrical shell (Model I)
with simply supported boundary conditions are given as follows:
radius R ¼ 0.1 m, length L ¼ 0.2 m, thickness h ¼ 2 mm, density
r ¼ 7850 kg/m3, Poisson's ratio m ¼ 0.3 and Young's modulus of
elasticity E ¼ 2.1 � 1011 Pa. The natural frequencies for each order
(m, n) are calculated and compared with the exact solution as
shown in Table 1. The natural frequencies obtained by the present
method are basically consistent with the exact solution. The
maximum relative errors are no more than 0.5%, which demon-
strates the reliability of the present method on free vibration of the
cylindrical shell.

b) Comparison: Model II

The emphasis of this part is to fully verify the effectiveness of the
present method on natural frequencies of the submerged cylin-
drical shell. The geometric and physical parameters of the model II
(Zhang, 2002) are given as follows: radius R ¼ 1.0 m, length
L ¼ 20 m, thickness h ¼ 10 mm, Poisson's ratio m ¼ 0.3, Young's
modulus of elasticity E¼ 2.1� 1011 Pa and density r¼ 7850 kg/m3.
Sound speed c0 in water equals 1500 m/s. The density of water
r0 ¼ 1000 kg/m3. For a clamped cylindrical shell, the natural fre-
quencies of the immersed shell are compared with analytical re-
sults and FEM result, as shown in Table 2. The maximum relative
error is no more than 3%, which shows that the present method is
consistent with FEM results and wave propagation method. It also
demonstrates the reliability of the presentmethod on free vibration
of the immersed cylindrical shell.

c) Comparison: Model III

Model III is constructed to validate the reliability of the method
on free vibration of the cylindrical shell with variable thickness. TheFig. 9. Comparison of sound pressure level of Model Ⅵ.
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geometric and physical parameters of the Model III are given as
follows: radius R ¼ 0.1 m, length L ¼ 0.2 m, Poisson's ratio m ¼ 0.3,
Young's modulus of elasticity E ¼ 2.1 � 1011 Pa and density

r ¼ 7800 kg/m3. The thickness h equals h0ð1þ Ax=LÞB, which is the
function of the axial coordinate value x. Both A and B are suggested
to be 1. h0 is set to 2 mm. The natural frequencies of the simply
supported cylindrical shell with variable thickness are compared
with FEM results, as shown in Table 3. From Table 3, the natural
frequencies obtained by the present method are in good agreement
with FEM results. The maximum relative difference is no more than
3%.

To keep both the thickness of both ends to be constant (the
thickness of left end hl ¼ 2 mm and the thickness of right end
hr ¼ 4 mm), the model III was employed to analyze the influence of
thickness coefficient A and B on free vibration of the cylindrical
shell with various thickness. When circumferential wavenumber n
is 2, 4, 6 and 8 respectively, the relation between natural fre-
quencies and thickness coefficient B was analyzed, as shown in
Fig. 3 and Fig. 4. The effect of the thickness coefficient B can be
ignored when circumferential wavenumber n is less than 4. The
difference becomes more obvious as the circumferential wave-
number n and axial wavenumber m increase. For a given wave-
number n, the curve shows the antisymmetric characteristic. When
the thickness coefficient B is negative, the natural frequency goes
up as the thickness coefficient B increases. It comes to an opposite
conclusion when the thickness coefficient B is positive.

When circumferential wavenumber n was 2, 4, 6 and 8 respec-
tively, the relation between natural frequencies and thickness co-
efficient Awas also analyzed, as shown in Fig. 5 and Fig. 6. The effect
of the thickness coefficient A is in accordance with that of the
thickness coefficient B when circumferential wavenumber n is less
than 4. The only difference is that the coefficient A affects the
natural frequency when m ¼ 1 and n ¼ 1. The difference of natural
frequencies become more obvious as the circumferential wave-
number n and axial wavenumberm increase. The natural frequency
goes up as the thickness coefficient A increases when n¼ 4, 6 and 8.
When n ¼ 2 the curve is approximately a horizontal line, which
means thickness coefficient A has little impact on the natural
frequency.

3.3. The acoustic response

a) Comparison analysis: Model Ⅳ

The geometric parameters of the Model Ⅳ are given as follows:
radius R ¼ 0.175 m, length L ¼ 0.6 m, thickness h ¼ 2 mm. The
centre of the left end of the cylindrical shell was defined cylindrical
coordinate origin. The radial unit force acts on the point (L/
2,0�,0.175) (cylindrical coordinates) of the cylindrical shell with
excitation frequency f ¼ 4 kHz. The hydrophone is fixed at the
position of 1 m from the external surface of the shell. The physical
parameters of the shell are given as follows: Poisson's ratio m ¼ 0.3,
Young's modulus of elasticity E ¼ 2.1 � 1011 Pa, density
r ¼ 7850 kg/m3, and loss factor h ¼ 0.01. Sound speed c0 in water
equals 1500 m/s. The density of water r0 ¼ 1000 kg/m3. The simply
supported boundary conditions at both ends are assumed. The re-
sults contrast of sound pressure level Lp is yielded by adopting the
present method, experimental method and B. Laulgnet's method
respectively, as shown in Fig. 7. The error curve shows the
maximum error of the sound pressure level between the present
method and experiment results. It can be seen from Fig. 7 that the
error of sound pressure level is 0.5%e5% at other angles except at
60�, which accords with the allowable range of error. It proves that
the present method is feasible, effective and sufficiently accurate

Fig. 10. Comparison of sound pressure level of Model Ⅶ: (a) hydrophone 1, (b) hy-
drophone 2, (c) hydrophone 3.
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and can be applied to predict sound radiation of cylindrical shells.

b) Comparison analysis: Model Ⅴ

The geometric parameters of the Model Ⅴ with simply sup-
ported boundary condition are given as follows: radius R ¼ 0.2 m,
length L ¼ 0.6 m, thickness h ¼ 3 mm. Sectional dimensions of the
stiffener is 2 mm � 30 mm. The stiffeners spacing Dl ¼ 0.2 m. The
radial unit force acts on the point (0.3 m, 0�, 0.2 m) (cylindrical
coordinates) of the shell with excitation frequency f ¼ 4 kHz. The
hydrophone is fixed at the position of 1 m from the external surface
of the shell. The physical parameters are the same as model Ⅳ. It
can be seen from Fig. 8 that the relative error of sound pressure
level between the presentmethod andwave propagationmethod is
no more than 6%. The results from the present method also are
consistent with the experimental values, except for some minor
differences in some partial angle. Hence, the present method pro-
posed can be applied to vibro-acoustic behaviour of the stiffened
cylindrical shell.

c) Comparison analysis: Model Ⅵ

Model Ⅵ with the variable thickness is constructed to validate
the availability and accuracy of the present method on the sound
radiation of the cylindrical shell with the variable thickness. The
geometric and physical parameters of the Model Ⅵ with clamped
boundary condition are given as follows: the variation coefficient
A¼ 1, the power coefficient B¼ 1. The other geometric and physical
parameters are the same as model Ⅴ, except without ring ribs. The
radial unit force acts with excitation frequency range 10 Hz-4kHz.
The observation point located at position (0.3m, 0�, 1.2 m), inwhich
acoustic responses of ModelⅥ are calculated by coupled FEM/BEM.
C3D8R elements in software ABAQUS are employed to generate
linear hexahedron meshes of the cylindrical shell, the size of which
is set to 4 mm. The external flow field radius is taken as 2 m. A
hemispherical flow field is meshed by AC3D4 acoustic tetrahedral
elements, the size of which is from 0.004m to 0.0125m. The results
comparison of radiated noises at the observation point between the
present method and coupled FEM/BEM is shown in Fig. 9.

The results from the present method are consistent with the
results from coupled FEM/BEM at 10 Hze2100 Hz. Although the
sound pressure level is slightly different at the resonance peak
value in the 2100~4 kHz range, the sound pressure values resulted
from the present method is in accord with numerical results basi-
cally. There are many reasons for the difference. The process of
equal divisions along the integral interval in Eq. (14) could cause
the error of approximation. Both the substitution of the finite field
for infinite fluid field and the setting of Tie connection at the
interface also lead to the numerical error in software ABAQUS. The
comparison provides the validity and reliability of the present
method, which can be applied to sound radiation of immersed
cylindrical shells with the variable thickness.

d) Comparison analysis: Model Ⅶ

The test model of a ring-stiffened cylindrical shell is constructed
and prepared to prove the effectiveness of the present method.
Model Ⅶ has the following material properties: Length L ¼ 0.8 m,
Radius R¼ 0.3 m. Shell thickness t¼ 4mm. Sectional dimensions of
the stiffener is 40 mm � 4 mm. The stiffeners spacing Dl ¼ 0.16 m.
The other physical parameters are the same as the ModelⅣ. 15 mm
thick caps are screwed at the ends of the cylinder. The shaker is
fixed on the end cap in order to excite the point (0.4 m,0�,0.3 m) of
Model Ⅶ. There are 3 hydrophones (BK-8104) is placed 1.0 m far
from the cylindrical shell, which was set up in the anechoic tank to

measure the sound pressure. Comparison of sound radiation curves
between model test and the present method with the linear sweep
frequency (100 Hz-2kHz) is given in Fig. 10. It can be observed that
although the sound pressure is slightly different at the resonance
peak value in the 500e2000 Hz band, the sound pressure result
from PTMM basically is in accord with test result. When the in-
ternal medium of the experimental model is full of air, the coupling
between structural mode and acoustic cavity mode has little effect
on the vibro-acoustic response of the cylindrical shell. In general
the present method provides enough verification and accuracy,
which can be applied to vibro-acoustic behaviours of immersed
stiffened cylindrical shells.

4. Conclusions

The vibro-acoustic model of the immersed stiffened cylindrical
shell with various thickness is developed in this paper to predict
the vibro-acoustic performance by combining PTMM and PWSM.
Based on thin shell theory, a global matrix formulation as the
governing equation is constructed with a set of field matrixes of
stiffened cylindrical shell segments with various thickness. Then
the dynamic behaviours can be directly solved by PTMM. The fluid
load simulated by PWSM is employed to evaluate the radiated noise
of the immersed cylindrical shell. Free vibration of three different
cylindrical shells including cylindrical shell, immersed cylindrical
shell and variable-thickness cylindrical shell are constructed and
analyzed to illustrates the feasibility of the present method.
Acoustic responses of four different cylindrical shells including
cylindrical shell, immersed cylindrical shell, stiffened cylindrical
shell and variable-thickness cylindrical shell are also constructed
and analyzed to demonstrate its effectiveness. It is worth to point
out that the proposed method is conveniently extended to analyze
the vibro-acoustic behaviours of other elastic shells like conical
shells, double-walled shells and combined shells with various
thickness.
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where Rb ¼ Rþ e e is the offset of the rib. E, G are the Modulus of
elasticity and shear of the rib. r is the density of the rib. A is the
sectional area of the rib. I1, I2 and J are the moment of inertia in x-
direction, y-direction and polar moment of inertia.
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