• Title/Summary/Keyword: Sheet Beam

Search Result 370, Processing Time 0.039 seconds

Structural Behavior of Strengthened RC Beams (보수.보강된 철근 콘크리트보의 구조적 거동에 관한 연구)

  • 오병환;조재열;강동옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.501-507
    • /
    • 1996
  • The final objectives of this study are to present the theoretical formula for reasonable structural analysis and practical codes on the repair/strengthening of damaged reinforced concrete structrues. For that purpose, in last year, preliminary experiments for flexure and shear of beam structure using carbon sheet and steel plate were performed, and in sequence, in this year, using aramid fiber sheet and steel plate more extensive experiment were performed. Repair for the performance of flexure and shear was focused on, and main variables were selected considering aplicablilty for practical field, such as, spacing of anchor bolt, lapping, jacking up, preloading level, and fiber difection as well as length of repairing plate and thickness. so new results from various angles are to be presented.

  • PDF

An Experimental Study on the Behavior of Full Scaled System Columns Reinforced with Steel Sheet Forms and Angles (강재 영구거푸집을 사용한 실대 크기의 시스템 기둥에 관한 실험적 연구)

  • Kang, Ji-Yeon;Lee, Su-Jin;Yoon, Yeong-Ho;Kim, Hyunh-Geun;Lee, Chang-Nam;Kim, Sang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.21-24
    • /
    • 2006
  • In recent, there are a lot of problems such as shortage of construction workers, complicate progress of work and so on under RC construction. To solve these problems, the construction methods without form-work are used in the main structural members - beam, slab and stairs. However, there isn't yet form-workless system for columns. The purpose of this study was to experimentally evaluate the structural behavior of full scaled no-form system columns reinforced with steel sheet forms and angles. The main variables are 1) comparison of concrete member strength with and without reinforcement, 2) effect of L-angle.

  • PDF

Dynamic Stability Analysis of Flexible Media (유연 매체의 동적 안정성 해석)

  • Jee, Jung-Geun;Hong, Sung-Kwon;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.596-599
    • /
    • 2004
  • The media transport systems, such as printers, copiers, facsimile, ATMs, cameras, etc., have been widely used and being developed rapidly. In the development of those systems, the media feeding mechanism is an important key technology for the design and development of the media transport systems. In this paper, a multi-degree of freedom sheet model with dynamic contact conditions is presented to understand the mechanism of sticking and jamming. A sheet is modelled as a cantilever beam and the feeding velocity is assumed to be constant. The relation between the feeding velocity and the coefficient of friction for guaranteeing stable feeding is presented. Simulations are performed for a horizontal linear guide and a oblique linear guide, calculating the contact force and contact states of mass points.

  • PDF

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.

An Experimental Study on Flexural Strength of Lip-Type Modular Steel Concrete Beam (Lip-Type 모듈형 SC보의 휨내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Shin, Il Kyoun;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2006
  • In this paper, the basic data regarding the application of the MSC (Modular Steel Concrete) beam are presented by comparing the experimental value with the theoretical value, focusing on the bending behavior of the Lip-type MSC beam, which is composed of steel and concrete. Considerable manpower is needed to fabricate the traditional MSC beam, particularly for the tasks of cutting, welding, etc. Because much time is needed to fabricate the traditional SC beam, the prefabrication concept is introduced, easily produce the required size of the SC beam by prefabricating the side module and the lower module, which is made up of a steel sheet. The result indicates that the method of uniting the modules, an d the composition method with concrete, should be improved. The proposed MSC beam can be used as a new structural member by increasing its coherent reinforcement with modules and the composition ratio of steel and concrete through a future study.

Pseudo-Ductile Hybrid FRP Sheet for Strengthening Reinforced Concrete Beams (유사연성 하이브리드 FRP 시트를 이용한 RC 보의 휨 보강)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.239-247
    • /
    • 2008
  • Use of both carbon fiber (CF) and glass fiber (GF) at the same time to strengthen existing flexural members was exploited. Using a proper volumetric GF / CF ratio, the CF can rupture first followed by subsequent rupture of GF at higher stress and strain showing a pseudo-ductile behavior. A theoretical study indicated that the ratio is 4.62 : 1 and higher where the pseudoductile effect can be shown. Flexural tests of plain concrete beams strengthened using fibers were first carried out. Hybrid FRP sheet using 8.8 : 1 ratio was then fabricated and the sheet was used to strengthen reinforced concrete beams. The RC beams strengthened using 1-ply and 2-ply hybrid sheets both revealed increased strength over a non-strengthened beam and ductile flexural behavior. A comparable beam strengthened using CF also showed increased strength but with limited ductility.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Geometric Nonlinear Analysis of Flexible Media Using $C^1$ Beam Element ($C^1$보요소를 이용한 유연매체의 기하비선형 해석)

  • Jee, Jung-Geun;Hong, Sung-Kwon;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.326-329
    • /
    • 2005
  • In the development of sheet-handling .machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at suck a high speed flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static analysis of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based m the updated Lagrangian approach are derived using $C^1$ beam element and numerical simulations are performed by Updated Newton-Raphson(UNR) method.

  • PDF

On Feasibility Study of the Charged Particle Beam Pretreatment Process for Non-conducting Metal Coating (무전도 금속 증착을 위한 하전 입자빔 전처리 공정의 타당성 연구)

  • Na, Myung Hwan;Park, Young Sik;Shim, Ha-Mong;Chun, Young Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.179-187
    • /
    • 2014
  • Purpose: Since several problems were found when present non-conducting metal coating process was applied to mass production, we study and develop to improve those problems. Methods: In this paper, a couple of analysis methods such as surface hardness, XPS spectrum analysis, morphology, and reflection ratio were used. Results: This paper suggest a new possibility of Non-conducting thin metal coating method that has quality of mass production phase without UV coating process. Conclusion: By the result of analysis, we can set optimized process conditions of the electro deposition coating using electron beam.