• 제목/요약/키워드: Shear tension

검색결과 649건 처리시간 0.031초

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

인장력을 받는 ㄱ형강의 블록전단 파단에 관한 실험적 연구 (An Experimental Study on the Block Shear Rupture of Angle Tension Members)

  • 김보영;이규광;최문식
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.721-730
    • /
    • 1998
  • 강 구조물의 접합부는 구조물이 안전에 큰 영향을 미치는 부분으로서 이에 대한 연구는 많이 이루어지고 있으나 순수 인장력을 받는 접합부의 블록전단 파단에 대한 연구는 외국에서도 근래에 시작되었으며 현재 국내에서는 연구실적이 없는 상태이다. 본 연구는 최근 우리나라에서 제정된 강구조 한계상태설계기준에 따른 블록전단 산정식의 타당성을 인장력을 받는 ㄱ형강 접합부의 실험에 의하여 규명하고자 한다. 연구방법은 기존의 연구결과의 블록전단 파단형상 및 극한내력을 본 연구와 비교분석하고 기준 산정식의 합당성을 평가하였다. 실험결과 접합부는 2가지 형상, 인장항복 전단파단과 전단항복 인장파단이 일어났으며 실험 파단하중이 기준식에 의한 내력보다 약 15% 크게 나타나고 있어 앞으로 보다 많은 연구에 의해 강구조 한계상태 설계법의 블록전단 산정식에 대한 평가가 필요하다고 사료된다.

  • PDF

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.

인장력을 받는 H형강 플랜지의 블록전단 파단에 관한 실험적 연구 (An Experimental Study on the Block Shear Rupture of Flange for H-Beam Tension Members)

  • 김보영;권찬;최문식
    • 한국강구조학회 논문집
    • /
    • 제11권3호통권40호
    • /
    • pp.291-299
    • /
    • 1999
  • 본 연구는 1997년 제정된 강구조 한계상태설계법에 있어서 블록전단 설계기준식의 타당성을 규명하고 외국설계규준과 비교검토하기 위하여 인장력을 받는 H형강 플랜지의 접합부에 대한 블록전단 파단실험을 하였다. 실험결과 접합부는 대부분 인장항복-전단파단과 전단항복-인장파단에 의한 블록전단이 일어났으며 실험에 의한 블록파단하중이 기준식에 의한 내력보다 약 23% 크게 나타나 현재 기준식은 블록전단내력을 과소평가하고 있어 더 많은 연구가 필요하다고 사료된다.

  • PDF

자동차 차체 패널의 점용접 및 플러그용접 특성에 대한 실험적 분석 (Experimental Study on Spot Weld and Plug Weld of Automotive Body Panel)

  • 권종호;김장훈;이용우
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.709-715
    • /
    • 2016
  • This paper presents a comparison of an experimental study on spot and plug welding of an automotive body panel. Spot welding is a common joining technology used in automotive body panel assembly. In automotive body repair, however, plug welding is widely used due to its technical simplicity and cost benefit. Some researchers have focused on the use of spot welding in the manufacturing process, but there has been very little research done with respect to the engineering analysis of the plug welding process. In this study, two kinds of specimens are considered to compare the difference of failure strength between spot weld and plug weld: normal tension and shear tension. The experimental results show, in both normal tension and shear tension, that spot welding has higher failure strength than plug welding. In addition, plug welding is more vulnerable to shear tension than normal tension. This study can be applied to further studies on practical optimization for maintenance and repair of automotive body panels.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

블록전단파괴 : State of the Arts (Block Shear Failure : State of the Arts)

  • 장선재;이우철;임남형;이진옥
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.75-78
    • /
    • 2008
  • Limit states of a tension member are the yielding of gross section, fracture of net section, and block shear failure. Block shear failure is very complicated than other limit state because of interaction of tension and shear failure. Block shear failure is studied continuously since the 1970s. However, failure model to estimate the strength of block shear failure provided in current design specifications is not reflective of the failure mode observed in the various experimental studies. Comparisons between the experimental results and design rules in various specifications about the block shear failure were conducted in this study. Also, the need for further studies of block shear failure were proposed.

  • PDF

이축인장압축장이론에 기반한 PSC보의 전단변형 (Shear Deformation based on the Biaxial Tension-Compression Theory in Prestressed Concrete Members applied by Axial Loading)

  • 정제평;김대중;모귀석;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.281-284
    • /
    • 2006
  • ASCE-ACI Committee 426 and 445, on Shear and Torsion, well noted in their report that recent research work regarding shear and torsion had been devoted primarily to members. But it was not logical approach of PSC members applied by axial force based on the shear deformation in web element. And it was not included that the effect of axial is to shift the shear strain(or crack width) in the web element versus the applied shear curve up or down by the amount by which the biaxial tension-compression state varies. The shear strength also increases or decreases, so that the change in shear strain at service load due to the presence of axial load is to some extent changed. Generally, in corresponding beams the shear strain at service load is less in the beam subject to axial compression and greater in the beam subject to axial tension, than in the beam without axial load. In particular, however, no research were available on the shear deformation in shear of PSC members with web reinforcement, subject to axial force in addition to shear and bending. Therefore, this study was basically performed to develop the program for the calculation of the shear deformation based on the shear effect of axial force in prestressed concrete members.

  • PDF

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.