Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.3.175

A set of failure variables for analyzing stability of slopes and tunnels  

Kim, Jun-Mo (School of Earth and Environmental Sciences, Seoul National University)
Lee, Sungho (School of Earth and Environmental Sciences, Seoul National University)
Park, Jai-Yong (School of Earth and Environmental Sciences, Seoul National University)
Kihm, Jung-Hwi (Department of Renewable Energy and Resources, Jungwon University)
Park, Sangho (School of Mechanical Engineering, Chungnam National University)
Publication Information
Geomechanics and Engineering / v.20, no.3, 2020 , pp. 175-189 More about this Journal
Abstract
A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.
Keywords
variably saturated geologic media; slopes; tunnels; groundwater flow; land deformation; failure potential; stability; local shear and tension failure variables; poroelastic hydromechanical numerical analyses;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Bear, J. and Corapcioglu, M.Y. (1981b), "Mathematical model for regional land subsidence due to pumping, 2. Integrated aquifer subsidence equations for vertical and horizontal displacements", Water Resour. Res., 17(4), 947-958. https://doi.org/10.1029/WR017i004p00947.   DOI
2 Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 12(2), 155-164. https://doi.org/10.1063/1.1712886.   DOI
3 Bishop, A.W. and Blight, G.E. (1963), "Some aspects of effective stress in saturated and partly saturated soils", Geotechnique, 13(3), 177-197. https://doi.org/10.1680/geot.1963.13.3.177.   DOI
4 BUTA (1992), "Summary report for enforcement design service of the construction phase 1 of the Busan Subway Line 2", Technical Report No. BUTA-1992-7, Busan Urban Transit Authority (BUTA), Busan, Korea (in Korean).
5 Carroll, M.M. (1979), "An effective stress law for anisotropic elastic deformation", J. Geophys. Res. Solid Earth, 84(B13), 7510-7512. https://doi.org/10.1029/JB084iB13p07510.   DOI
6 Carsel, R.F. and Parrish, R.S. (1988), "Developing joint probability distributions of soil water retention characteristics", Water Resour. Res., 24(5), 755-769. https://doi.org/10.1029/WR024i005p00755.   DOI
7 Cheng, A.H.D. (1997), "Material coefficients of anisotropic poroelasticity", Int. J. Rock Mech. Min. Sci., 34(2), 199-205. https://doi.org/10.1016/S0148-9062(96)00055-1.   DOI
8 Christian, J.T., Boehmer, J.W. and Martin, P.P. (1972), "Consolidation of a layer under a strip load", J. Soil Mech. Found. Div., Proc. Am. Soc. Civ. Eng., 98(SM7), 693-707.   DOI
9 Corapcioglu, M.Y. and Bear, J. (1983), "A mathematical model for regional land subsidence due to pumping, 3. Integrated equations for a phreatic aquifer", Water Resour. Res., 19(4), 895-908. https://doi.org/10.1029/WR019i004p00895.   DOI
10 Lekhnitskii, S.G. (1963), Theory of Elasticity of an Anisotropic Elastic Body, Holen-Day, San Francisco, California, U.S.A.
11 Lewis, R.W., Schrefler, B.A. and Simoni, L. (1991), "Coupling versus uncoupling in soil consolidation", Int. J. Numer. Anal. Meth. Geomech., 15(8), 533-548. https://doi.org/10.1002/nag.1610150803.   DOI
12 Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, 4th Edition, Dover Publications, New York, New York, U.S.A.
13 Mohr, O. (1900), "Welche umstande bedingen die elastizitatsgrenze und den bruch eines materials?", Zeitschrift des Vereines Deutscher Ingenieure, 44(45), 1524-1530, 1572-1577 (in German).
14 Neuzil, C.E. (2003), "Hydromechanical coupling in geologic processes", Hydrogeol. J., 11(1), 41-83. https://doi.org/10.1007/s10040-002-0230-8.   DOI
15 Noorishad, J., Mehran, M. and Narasimhan, T.N. (1982), "On the formulation of saturated-unsaturated fluid flow in deformable porous media", Adv. Water Resour., 5(1), 61-62. https://doi.org/10.1016/0309-1708(82)90030-6.   DOI
16 Nur, A. and Byerlee, J.D. (1971), "An exact effective stress law for elastic deformation of rock with fluids", J. Geophys. Res., 76(26), 6414-6419. https://doi.org/10.1029/JB076i026p06414.   DOI
17 Ouyang, Z. and Elsworth, D. (1993), "Evaluation of groundwater flow into mined panels", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30(2), 71-79. https://doi.org/10.1016/0148-9062(93)90701-E.   DOI
18 Safai, N.M. and Pinder, G.F. (1979), "Vertical and horizontal land deformation in a desaturating porous medium", Adv. Water Resour., 2, 19-25. https://doi.org/10.1016/0309-1708(79)90003-4.   DOI
19 Sandhu, R.S. and Wilson, E.L. (1969), "Finite-element analysis of seepage in elastic media", J. Eng. Mech. Div., Proc. Am. Soc. Civ. Eng., 95(EM3), 641-652.
20 Coulomb, C.A. (1776), "Essai sur une application des regles de maximis & minimis a quelques problemes de statique, relatifs a l'architecture", Memoires de Mathematique et de Physique, 7, 343-382 (in French).
21 Bai, M. and Elsworth, D. (1994), "Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media", Rock Mech. Rock Eng., 27(4), 209-234. https://doi.org/10.1007/BF01020200.   DOI
22 Cui, L., Cheng, A.H.D., Kaliakin, V.N., Abousleiman, Y. and Roegiers, J.C. (1996), "Finite element analysis of anisotropic poroelasticity: A generalized Mandel's problem and an inclined borehole problem", Int. J. Numer. Anal. Meth. Geomech., 20(6), 381-401. https://doi.org/10.1002/(SICI)1096-9853(199606)20:6<381::AID-NAG826>3.0.CO;2-Y.   DOI
23 Das, B.M. (1994), Principles of Geotechnical Engineering, 3rd Edition, PWS Publishing Company, Boston, Massachusetts, U.S.A.
24 Bai, M. and Elsworth, D. (1991), "Modeling subsidence and groundwater flow due to underground mining", Proceedings of the 34th Annual Meeting of the Association of Engineering Geologists, Chicago, Illinois, U.S.A., September-October, 981-990.
25 Balaban, E. and Onur, M.I. (2018), "Comparison of behaviour of basal reinforced piled embankment with two layer of reinforcement", Geomech. Eng., 16(3), 233-245. https://doi.org/10.12989/gae.2018.16.3.233.   DOI
26 Ardeshiri-Lajimi, S., Yazdani, M. and Assadi-Langroudi, A. (2016), "A study on the liquefaction risk in seismic design of foundations", Geomech. Eng., 11(6), 805-820. https://doi.org/10.12989/gae.2016.11.6.805.   DOI
27 Tran, A.T.P., Kim, A.R. and Cho, G.C. (2019), "Numerical modeling on the stability of slope with foundation during rainfall", Geomech. Eng., 17(1), 109-118. https://doi.org/10.12989/gae.2019.17.1.109.   DOI
28 Thompson, M. and Willis, J.R. (1991), "A reformation of the equations of anisotropic poroelasticity", J. Appl. Mech., Trans. Am. Soc. Mech. Eng., 58(3), 612-616. https://doi.org/10.1115/1.2897239.   DOI
29 Lee, C.J., Jeon, Y.J., Kim, S.H. and Park, I.J. (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomech. Eng., 11(4), 553-570. https://doi.org/10.12989/gae.2016.11.4.553.   DOI
30 Lee, C.Z. and Park, H.I. (1976), "A petrologic study on the acidic igneous rocks, Kimhae area", J. Geol. Soc. Korea, 12(4), 227-241 (in Korean with English abstract).
31 Kim, J.M. (2003), "Integrated modeling for water level fluctuation and land deformation due to groundwater pumping", Final Report No. 5-3-1, Geological and Groundwater Engineering Laboratory, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea (in Korean with English summary).
32 Kim, J.M. (2004), "Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media", Geosci. J., 8(3), 291-300. https://doi.org/10.1007/BF02910248.   DOI
33 Kim, J.M. (2005), "Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping", Water Resour. Res., 41(1), W01003. https://doi.org/10.1029/2003WR002941.   DOI
34 Kim, J.M. and Parizek, R.R. (1999a), "Three-dimensional finite element modelling for consolidation due to groundwater withdrawal in a desaturating anisotropic aquifer system", Int. J. Numer. Anal. Meth. Geomech., 23(6), 549-571. https://doi.org/10.1002/(SICI)1096-9853(199905)23:6<549::AID-NAG983>3.0.CO;2-Y.   DOI
35 Tu, Y., Zhong, Z., Luo, W., Liu, X. and Wang, S. (2016), "A modified shear strength reduction finite element method for soil slope under wetting-drying cycles", Geomech. Eng., 11(6), 739-756. https://doi.org/10.12989/gae.2016.11.6.739.   DOI
36 Ukritchon, B., Faustino, J.C. and Keawsawasvong, S. (2016), "Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment", Geomech. Eng., 10(5), 577-598. https://doi.org/10.12989/gae.2016.10.5.577.   DOI
37 Terzaghi, K. (1925), Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Leipzig, Saxony, Germany.
38 van Genuchten, M.Th. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.   DOI
39 Kim, J.M. (2006), "COWADE123D: A finite element model for fully coupled saturated-unsaturated water flow in deforming one-, two-, and three-dimensional true anisotropic porous, fractured, and fractured porous geologic media, version 2.17", Technical Report No. GGEL-2006-11, Geological and Groundwater Engineering Laboratory, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea.
40 Kim, J.M. and Parizek, R.R. (1997), "Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system", J. Hydrol., 202(1-4), 231-243. https://doi.org/10.1016/S0022-1694(97)00067-X.   DOI
41 Kim, J.M. and Parizek, R.R. (1999b), "A mathematical model for the hydraulic properties of deforming porous media", Ground Water, 37(4), 546-554. https://doi.org/10.1111/j.1745-6584.1999.tb01141.x.   DOI
42 Kim, J.M. and Parizek, R.R. (2005), "Numerical simulation of the Rhade effect in layered aquifer systems due to groundwater pumping shutoff", Adv. Water Resour., 28(6), 627-642. https://doi.org/10.1016/j.advwatres.2004.12.005.   DOI
43 Kim, J.M., Parizek, R.R. and Elsworth, D. (1997), "Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining", Int. J. Rock Mech. Min. Sci., 34(8), 1187-1199. https://doi.org/10.1016/S1365-1609(97)80070-6.   DOI
44 Yeh, G.T. (1999), Computational Subsurface Hydrology: Fluid Flows, Kluwer Academic Publishers, Norwell, Massachusetts, U.S.A.
45 Verruijt, A. (1969), Elastic Storage of Aquifers, in De Wiest, R.J.M. (Editor), Flow through Porous Media, Academic Press, New York, New York, U.S.A., 331-376.
46 Wang, C., Zhou, S., Wang, B., Guo, P. and Su, H. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., 11(6), 847-865. https://doi.org/10.12989/gae.2016.11.6.847.   DOI
47 Yeh, G.T. (1987), "FEMWATER: A finite element model of water flow through saturated-unsaturated porous media, first revision", Technical Report No. ORNL-5567/R1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
48 Yeh, H.D., Lu, R.H. and Yeh, G.T. (1996), "Finite element modelling for land displacements due to pumping", Int. J. Numer. Anal. Meth. Geomech., 20(2), 79-99. https://doi.org/10.1002/(SICI)1096-9853(199602)20:2<79::AID-NAG808>3.0.CO;2-M.   DOI
49 Yu, S. (2018), "Limit analysis of a shallow subway tunnel with staged construction", Geomech. Eng., 15(5), 1039-1046. https://doi.org/10.12989/gae.2018.15.5.1039.   DOI
50 Zhang, H., Chen, Q., Chen, J. and Wang, J. (2017), "Application of a modified structural clay model considering anisotropy to embankment behavior", Geomech. Eng., 13(1), 79-97. https://doi.org/10.12989/gae.2017.13.1.079.   DOI
51 Girrens, S.P., Anderson, C.A., Bennett, J.G. and Kramer, M. (1981), "Numerical prediction of subsidence with coupled geomechanical-hydrological modeling", Proceedings of the Workshop on Surface Subsidence Due to Underground Mining, Morgantown, West Virginia, U.S.A., November-December, 63-70.
52 Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. https://doi.org/10.12989/gae.2017.13.2.353.   DOI
53 KMA (1990-1999), Climatological Data of Seoul for 1990-1999, Korea Meteorological Administration (KMA), Seoul, Korea. .
54 Zheng, G., Du, Y., Cheng, X., Diao, Y., Deng, X. and Wang, F. (2017), "Characteristics and prediction methods for tunnel deformations induced by excavations", Geomech. Eng., 12(3), 361-397. https://doi.org/10.12989/gae.2017.12.3.361.   DOI
55 Lee, I.M. and Kim, D.H. (1999), "Parameter estimation using extended Bayesian method in tunnelling", Comput. Geotech., 24(2), 109-124. https://doi.org/10.1016/S0266-352X(98)00031-7.   DOI
56 Lambe, T.W. and Whitman, R.V. (1979), Soil Mechanics, SI Version, John Wiley and Sons, New York, New York, U.S.A.
57 Freeze, R.A. and Cherry, J.A. (1979), Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A.
58 Ghaboussi, J. and Wilson, E.L. (1973), "Flow of compressible fluid in porous elastic media", Int. J. Numer. Meth. Eng., 5(3), 419-442. https://doi.org/10.1002/nme.1620050311.   DOI
59 Goodman, R.E. (1989), Introduction to Rock Mechanics, 2nd Edition, John Wiley and Sons, New York, New York, U.S.A.
60 Huang, Y.H. (2014), Slope Stability Analysis by the Limit Equilibrium Method: Fundamentals and Methods, American Society of Civil Engineers Press, Reston, Virginia, U.S.A.
61 Huyakorn, P.S., Springer, E.P., Guvanasen, V. and Wadsworth, T.D. (1986), "A three-dimensional finite-element model for simulating water flow in variably saturated porous media", Water Resour. Res., 22(13), 1790-1808. https://doi.org/10.1029/WR022i013p01790.   DOI
62 Kim, J.M. (2000), "A fully coupled finite element analysis of water-table fluctuation and land deformation in partially saturated soils due to surface loading", Int. J. Numer. Meth. Eng., 49(9), 1101-1119 https://doi.org/10.1002/1097-0207(20001130)49:9<1101::AIDNME1>3.0.CO;2-K.   DOI
63 Huyakorn, P.S., Thomas, S.D. and Thompson, B.M. (1984), "Techniques for making finite elements competitive in modeling flow in variably saturated porous media", Water Resour. Res., 20(8), 1099-1115. https://doi.org/10.1029/WR020i008p01099.   DOI
64 KMA (1991-1999), Climatological Data of Busan for 1991-1999, Korea Meteorological Administration (KMA), Seoul, Korea. .
65 Jaeger, J.C. and Cook, N.G.W. (1979), Fundamentals of Rock Mechanics, 3rd Edition, Chapman and Hall, London, U.K.
66 Kim, J.M. (1995), "COWADE123D: A finite element model for fully coupled saturated-unsaturated water flow in deforming one-, two-, and three-dimensional porous and fractured media, version 1.0", Technical Report No. HGL-1995-9, Hydrogeology Laboratory, Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, U.S.A.
67 Kim, J.M. (1996), "A fully coupled model for saturatedunsaturated fluid flow in deformable porous and fractured media", Ph.D. Dissertation, Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, U.S.A.
68 Bear, J. and Corapcioglu, M.Y. (1981a), "Centrifugal filtration in deformable porous media", in Bear, J. and Corapcioglu, M.Y. (Editors), "A series of four papers on water flow in deformable porous media", Technical Report No. UMR-0284, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A., Section I, 1-42.
69 Kim, J.M. (2002), "COWADE123D: A finite element model for fully coupled saturated-unsaturated water flow in deforming one-, two-, and three-dimensional porous and fractured media, version 2.11", Technical Report No. GGEL-2002-9, Geological and Groundwater Engineering Laboratory, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea.
70 Bardet, J.P. (1997), Experimental Soil Mechanics, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A.
71 Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. https://doi.org/10.12989/gae.2016.11.4.471.   DOI