• Title/Summary/Keyword: Shape-Generation

Search Result 1,004, Processing Time 0.023 seconds

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

A Closer Look at the Effect of Particle Shape on Machined Surface at Abrasive Machining (입자연마가공에서의 입자 형상의 영향에 대한 고찰)

  • Kim, Dong-Geun;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Despite the increasing need of nanometer-scale accuracy in abrasive machining using ultrasmall particles such as abrasive jet and chemical mechanical polishing(CMP), the process mechanism is still unknown. Based on the background, research on the effects of various process parameters on the machined surface at abrasive machining was motivated and performed by using finite element analysis where the effect of slurry fluid flow involved. The effect of particle shape on the machined surface during particle-surface collision was discussed in this paper. The results from FEA simulation revealed that any damage or defect generation on machined surface by the impact may occur only if the particle has enough impact energy. Therefore, it could be concluded that generation of the defects and damage on the wafer surface after CMP process was mainly due to direct contact of the 3 bodies, i.e., pad-particle-wafer.

Researches on Collision Avoidance Algorithms for Autonomous Driving System (자율주행 시스템의 장애물 회피 알고리즘에 관한 연구)

  • Ahn, D.S.;Park, G.H.;Choi, G.J.;Jeon, S.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • In unmanned vehicles' navigation, the shapes of obstacles are generally irregular and complex. The motion of vehicles based on the range sensor system such as ultrasonic sensors or laser sensors can be unstable due to the irregular shape of the obstacles. In this case, to generate stable trajectory of unmanned vehicles equipped with range sensors, we need an approach that can simplify an obstacle's irregular shape information. In this paper, we propose the trajectory generation algorithm that an vehicle can stably navigate in the environments where irregular shaped obstacles are scattered. The proposed method is verified through the analysis of vehicle's trail and direction data acquired by simulations and implementations.

차세대 로터 블레이드 형상정의 및 공력소음 해석

  • Yee, Kwan-Jung;Hwang, Chang-Jeon;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 2003
  • In this study, a rotor planform shape with high performance and low noise has been designed and its aerodynamic and aeroacoustic characteristics are analysed. First of all, rotor blade planform with low noise characteristics, has been designed based on the paddle-shape blade by applying vane-tip concept. Finally, noise characteristics of the designed next-generation rotor blade have been investigated and the results are compared with those of BERP blade.

  • PDF

A Study on CAM System for Machining of Sculptured Surface in Mold Cavity(1) - Generation of High Precision Machining Data for Curved Surfaces - (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구(1) -고정도 곡면가상 정보 생성을 위한 이론적 고찰-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-100
    • /
    • 1994
  • For generating NC machining data automatically, it is important to handle computer models such as geometric shape data including engineering specifications for the mechanical part to be manufactured. We proposed unique CAM system for a personal computer that can define the geometric shape in an ease manner and machine the sculptured surfaces of a mold cavity. In this paper, the theoretical basis of generation of high precision machining data for a mold cavity is obtained. The first is geometric modelling, and the second is high precision machining with an optimized tool path algorithm satisfying given tolerance limits. Especially, the bicubic Bezier basis function is adopted for a geometric modelling.

  • PDF

Contour based Algorithms for Generating 3D Models from CT Images (CT 이미지로부터 3차원 모델 생성을 위한 contour 기반 알고리즘)

  • 류재헌;김현수;이관행
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.174-182
    • /
    • 2003
  • Recently, medical imaging has taken interest on CAD based solution for anatomical part fabrication or finite element analysis of human body. In principle, contours representing object boundary are obtained through image processing techniques. Surface models are then approximated by a skinning method. For this, various methods should be applied to medical images and contours. The major bottleneck of the reconstruction is to remove shape inconsistency between contours and to generate the branching surface. In order to solve these problems, bi-directional smoothing and the composite contour generation method are proposed. Bi-directional smoothing has advantage of removing the shape inconsistency between contours and minimizing shrinkage effect with a large number of iterations. The composite contour by the proposed method ensures smooth transition in branching region.

A Study on the Freeform Surface Generation Using Parametric Method (파라메트릭기법을 이용한 3차원 자유곡면 생성에 관한 연구)

  • 김태규;변문현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.293-303
    • /
    • 1998
  • The objective of this study is to develop a PC level freeform surface modeling system which explicitly represents information of part geometry. Surface modeler uses nonuniform rational B-spline (NURBS) function with nonuniform knot vector for the flexible modeling work. The results of this study are as follows. 1) By implementation surface modeler through applying representation scheme proposed to represent free-form surface explicity, the technical foundation to develop free-from surface modeling system using parametric method. 2) Besides the role to model geometric shape of a surface, geometric modeler is developed to model arbitrary geometric shape. By doing this, the availability of the modeling system is improved. Geometric modeler can be utilized application fields such as collision test of tool and fixture, and tool path generation for NC machine tool.

  • PDF

Layer Generation for Hybrid Rapid Prototyping System Using Machining and Deposition (절삭과 적층을 복합적으로 수행하는 하이브리드방식 쾌속시작시스템을 위한 층분할)

  • Lee K.W.;Kang J.G.;Zhu H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.421-431
    • /
    • 2005
  • This paper introduces a new approach for saving build time of hybrid rapid prototyping by decomposing a part into minimum number of layers. In the hybrid rapid prototyping, a part of a complicated shape is realized by adding layers of a simpler shape, each of which is obtained by machining a sheet of constant thickness from its top and bottom surfaces. Thus it is desired to decompose a given part into the minimum number of layers while guaranteeing each layer to be fabricated from the given sheets using a 3-axis milling machine. To satisfy these requirements, a concave edge-based algorithm is proposed to decompose a part into layers by considering the tool accessibility, the total number of layers, and the allowable sheet thickness.

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF