• 제목/요약/키워드: Shadowing property

검색결과 77건 처리시간 0.017초

TOPOLOGICAL STABILITY OF INVERSE SHADOWING SYSTEMS

  • Lee, Keonhee;Lee, Joonhee
    • 충청수학회지
    • /
    • 제13권1호
    • /
    • pp.53-63
    • /
    • 2000
  • The inverse shadowing property of a dynamical system is an "inverse" form of the shadowing property of the system. Recently, Kloeden and Ombach proved that if an expansive system on a compact manifold has the shadowing property then it has the inverse shadowing property. In this paper, we study topological stability of the inverse shadowing dynamical systems. In particular, we show that if an expansive system on a compact manifold has the inverse shadowing property then it is topologically stable, and so it has the shadowing property.

  • PDF

DENSITY OF D-SHADOWING DYNAMICAL SYSTEM

  • Kim, J.M.;Kim, S.G.
    • Korean Journal of Mathematics
    • /
    • 제13권1호
    • /
    • pp.91-101
    • /
    • 2005
  • In this paper, we give the notion of the D-shadowing property, D-inverse shadowing property for dynamical systems. and investigate the density of D-shadowing dynamical systems and the D-inverse shadowing dynamical systems. Moreover we study some relationships between the D-shadowing property and other dynamical properties such as expansivity and topological stability.

  • PDF

VARIOUS SHADOWING PROPERTIES FOR TIME VARYING MAPS

  • Sarkooh, Javad Nazarian
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.481-506
    • /
    • 2022
  • This paper is concerned with the study of various notions of shadowing of dynamical systems induced by a sequence of maps, so-called time varying maps, on a metric space. We define and study the shadowing, h-shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties of these dynamical systems. We show that h-shadowing, limit shadowing and s-limit shadowing properties are conjugacy invariant. Also, we investigate the relationships between these notions of shadowing for time varying maps and examine the role that expansivity plays in shadowing properties of such dynamical systems. Specially, we prove some results linking s-limit shadowing property to limit shadowing property, and h-shadowing property to s-limit shadowing and limit shadowing properties. Moreover, under the assumption of expansivity, we show that the shadowing property implies the h-shadowing, s-limit shadowing and limit shadowing properties. Finally, it is proved that the uniformly contracting and uniformly expanding time varying maps exhibit the shadowing, limit shadowing, s-limit shadowing and exponential limit shadowing properties.

INVERSE SHADOWING PROPERTY OF MORSE-SMALE SYSTEMS

  • Choi, Taeyoung;Lee, Keonhee
    • 충청수학회지
    • /
    • 제15권1호
    • /
    • pp.61-73
    • /
    • 2002
  • We consider the inverse shadowing property of a dynamical system which is an "inverse" form of the shadowing property of the system. In particular, we show that every Morse-Smale system f on a compact smooth manifold has the inverse shadowing property with respect to the class $\mathcal{T}_h(f)$ of continuous methods generated by homeomorphisms, but the system f does not have the inverse\mathrm{T} shadowing property with respect to the class $\mathcal{T}_c(f)$ of continuous methods.

  • PDF

CONTINUOUS SHADOWING AND INVERSE SHADOWING FOR FLOWS

  • Lee, Keonhee;Lee, Manseob;Lee, Zoonhee
    • 충청수학회지
    • /
    • 제20권3호
    • /
    • pp.297-310
    • /
    • 2007
  • The notions of continuous shadowing and inverse shadowing for flows are introduced, and show that an expansive flow on a compact manifold with the shadowing property has the continuous shadowing property. Moreover it is proved that the continuous shadowing property implies the inverse shadowing property.

  • PDF

ERGODIC SHADOWING, $\underline{d}$-SHADOWING AND EVENTUAL SHADOWING IN TOPOLOGICAL SPACES

  • Sonika, Akoijam;Khundrakpam Binod, Mangang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.839-853
    • /
    • 2022
  • We define the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property in terms of the topology of the phase space. Secondly we define these notions in terms of the compatible uniformity of the phase space. When the phase space is a compact Hausdorff space, we establish the equivalence of the corresponding definitions of the topological approach and the uniformity approach. In case the phase space is a compact metric space, the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property defined in terms of topology and uniformity are equivalent to their respective standard definitions.

ON STRONG EXPONENTIAL LIMIT SHADOWING PROPERTY

  • Darabi, Ali
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1249-1258
    • /
    • 2022
  • In this study, we show that the strong exponential limit shadowing property (SELmSP, for short), which has been recently introduced, exists on a neighborhood of a hyperbolic set of a diffeomorphism. We also prove that Ω-stable diffeomorphisms and 𝓛-hyperbolic homeomorphisms have this type of shadowing property. By giving examples, it is shown that this type of shadowing is different from the other shadowings, and the chain transitivity and chain mixing are not necessary for it. Furthermore, we extend this type of shadowing property to positively expansive maps with the shadowing property.

TOPOLOGICAL ERGODIC SHADOWING AND TOPOLOGICAL PSEUDO-ORBITAL SPECIFICATION OF IFS ON UNIFORM SPACES

  • Thiyam Thadoi Devi;Khundrakpam Binod Mangang;Lalhmangaihzuala
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.929-942
    • /
    • 2023
  • In this paper, we discuss topological ergodic shadowing property and topological pseudo-orbital specification property of iterated function systems(IFS) on uniform spaces. We show that an IFS on a sequentially compact uniform space with topological ergodic shadowing property has topological shadowing property. We define the notion of topological pseudo-orbital specification property and investigate its relation to topological ergodic shadowing property. We find that a topologically mixing IFS on a compact and sequentially compact uniform space with topological shadowing property has topological pseudo-orbital specification property and thus has topological ergodic shadowing property.

POSITIVELY EXPANSIVE MAPS AND THE LIMIT SHADOWING PROPERTIES

  • Sakai, Kazuhiro
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.207-218
    • /
    • 2021
  • In this paper, the notion of two-sided limit shadowing property is considered for a positively expansive open map. More precisely, let f be a positively expansive open map of a compact metric space X. It is proved that if f is topologically mixing, then it has the two-sided limit shadowing property. As a corollary, we have that if X is connected, then the notions of the two-sided limit shadowing property and the average-shadowing property are equivalent.