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ON STRONG EXPONENTIAL LIMIT

SHADOWING PROPERTY

Ali Darabi

Abstract. In this study, we show that the strong exponential limit shad-

owing property (SELmSP, for short), which has been recently introduced,
exists on a neighborhood of a hyperbolic set of a diffeomorphism. We also

prove that Ω-stable diffeomorphisms and L-hyperbolic homeomorphisms
have this type of shadowing property. By giving examples, it is shown

that this type of shadowing is different from the other shadowings, and

the chain transitivity and chain mixing are not necessary for it. Further-
more, we extend this type of shadowing property to positively expansive

maps with the shadowing property.

1. Introduction

In the theory of shadowing, usually a Riemannian manifold M with metric d
and a C1-diffeomorphism φ : M →M are considered. Given δ > 0, a sequence
ξ = {xk}k∈Z ⊂M with the property

d(φ(xk), xk+1) < δ, k ∈ Z,
is called a δ-pseudo-orbit. Often, pseudo-orbits are obtained as a result of
the numerical studies of dynamical systems. The dynamical system φ has the
shadowing property (or POTP, for short) on a set Y ⊂ M , if for each ε > 0
there exists δ > 0 such that for a given δ-pseudo-orbit ξ = {xk}k∈Z ⊂ Y there
is some point p ∈M with the property that

d(φk(p), xk) < ε, k ∈ Z.
We should recall that if Y = M , then it is said that φ has the POTP. It is
well known that a diffeomorphism has the POTP on a neighborhood of its
hyperbolic set. This property is thoroughly studied in [8] and [9].

We say that the dynamical system φ has the Lipschitz shadowing property
(LpSP) on Y if there exist constants L, δ0 > 0 such that for every δ-pseudo-
orbit ξ = {xk}k∈Z ⊂ Y with 0 < δ < δ0, there exists some point p ∈ M
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so that d(φk(p), xk) < Lδ, k ∈ Z. Indeed, the LpSP is stronger than the
POTP. Also, it is proved that the LpSP holds on a neighborhood of hyperbolic
set [9]. Note that Pilyugin et al. in [11] interestingly, showed that the LpSP
implies structural stability (and therefore, the LpSP is equivalent to structural
stability). In addition, they proved that Anosov systems are equivalent to
expansive systems that have the LpSP [11, Corollary 3].

Another kind of shadowing property is the limit shadowing property (LmSP)
which was introduced by Eirola et al. in [4]. Precisely, we say that the dynam-
ical system φ has the limit shadowing property on a set Y if for any sequence
ξ = {xk}k≥0 ⊂ Y with the property

d(φ(xk), xk+1)→ 0, k →∞
there is a point p ∈M such that

d(φk(p), xk)→ 0, k →∞.
From the numerical point of view, this property means that if we apply a
numerical method that approximates the orbits of φ with improving accuracy
so that one-step errors go to zero as time goes to infinity, then the numerically
obtained trajectories tend to the real ones.

If b < ∞ we say that a finite δ-pseudo-orbit {xi}bi=0 of f is a δ-chain from
x0 to xb of length b. A non-empty subset A of X is said to be chain transitive
whenever for any x, y ∈ A and any δ > 0, there exists a δ-chain from x to y. A
map f is said chain transitive if X itself is a chain transitive set.

Lee and Sakai in [7], proved that expansive systems with the shadowing prop-
erty have limit shadowing property. More recently, Kulczycki et al. considered
the converse case. In [6], they proved that in compact dynamical systems,
chain transitivity together with limit shadowing property implies the shadow-
ing property and transitivity. Therefore, in transitive expansive systems, the
shadowing and the limit shadowing are equivalent. See [6, Corollary 7.5]. Later
in [3], interestingly, it was proved that the shadowing, the limit shadowing, and
the two-sided limit shadowing with a gap are equivalent.

Ahmadi and Molaei in [1] introduced a new type of limit shadowing such
that one-step errors tend to zero with exponential rate. Their definition is as
follows:

Definition ([1]). The dynamical system φ has the strong exponential limit
shadowing (SELmSP, for short) on M if there exist constants L > 0 and
λ ∈ (0, 1) such that for every sequence ξ = {xk}k≥0 with

(1.1) d(φ(xk), xk+1) ≤ λk, k ≥ k1, k1 ∈ N

there exist a point p ∈M and k2 ∈ N such that

(1.2) d(φk(p), xk) ≤ Lλk, k ≥ k2, k2 ∈ N.

In our opinion, the SELmSP has not been studied extensively yet. In [1]
the authors studied a weaker form of the strong exponential limit shadowing,
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named the exponential limit shadowing property (ELmSP, for short). Indeed,

their definition replaces the exponential term λk by λ
k
2 in relation (1.2). They

proved that the ELmSP holds on a neighborhood of a hyperbolic set. Also,
they deduced that Ω-stability implies the ELmSP.

In what follows, we prove the existence of the strong exponential limit shad-
owing on a neighborhood of a hyperbolic set and prove that positively expan-
sive open maps have this type of limit shadowing. In order to show the above
existence, we invoke a result in [4].

This paper is organized as follows. In Section 2, we prove that the SELmSP
holds near a hyperbolic set. In Section 3, it is shown that Ω-stability implies
the SELmSP. Some examples represented in Section 4, show that the SELmSP
is different from other shadowing properties.

2. The SELmSP property

Let us recall the following theorem, which is a stronger version of the shad-
owing lemma.

Theorem 2.1 ([9]). If Λ is a hyperbolic set for a diffeomorphism φ, then there
exists a neighborhood W of Λ on which φ has the LpSP.

We invoke the following lemma to prove Theorem 2.3.

Lemma 2.2 ([4]). Let Λ be a hyperbolic set for a diffeomorphism φ. Then there
exist a neighborhood U of Λ, and the constants δ > 0 and ν ∈ (0, 1) such that
if two points x, y have the properties φk(x), φk(y) ∈ U and d(φk(x), φk(y)) ≤ δ
for k ≥ 0, then d(φk(x), φk(y)) ≤ 2νkd(x, y), k ≥ 0.

Theorem 2.3. Let Λ be a hyperbolic set for a diffeomorphism φ of M . Then
there exists a neighborhood W of Λ on which φ has the SELmSP on W .

Proof. By Theorem 2.1 there exists a neighborhood U0 of Λ on which φ has
the LpSP property with the constants L0 and d0. Take the neighborhood U1

of Λ and numbers ν ∈ (0, 1) and δ > 0 given by Lemma 2.2.
If we put

U = U0 ∩ U1,

then we can find a neighborhood W of Λ such that N(W, δ) ⊂ U (by decreasing
δ, if necessary), where N(W, δ) is the δ-neighborhood of W . We claim that for
λ2 = ν ∈ (0, 1), φ has the SELmSP on W with constants λ2 and L = L0 + 2δ.
The rest of the proof is a mimic of the proof of [1, Theorem 2.1]. �

Note that it is easy to show that the strong exponential limit shadowing
property is invariant of topological conjugacy. In fact, suppose (X, f) and
(Y, g) are two conjugate systems, i.e., h ◦ f = g ◦ h, where h is a conjugacy.
Assume that f has the SELmSP with constants L and λ, and ξ = {yk}k≥0 is

a sequence such that dY (g(yk), (yk+1)) ≤ λ
k
2 for k ≥ k1. Fix i, k big enough

(i ≥ k ≥ k1). By uniform continuity of h−1 choose δ > 0 corresponding to
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ε = λi. Note that, if necessary, by increasing k1 we can assume that λ
k
2 < δ.

Now dX
(
fh−1(yk), h−1(yk+1)

)
= dX

(
h−1g(yk), h−1(yk+1)

)
< λi < λk, k ≥ k1.

So, h−1(ξ) satisfies relation (1.1) for f . Therefore, there exist z ∈ X and
k2 ∈ N so that dX(fk(z), h−1(yk)) < Lλk for k ≥ k2. Again, fix i, k big enough
(i ≥ k ≥ k2). By uniform continuity of h choose η > 0 corresponding to
ε = Lλi. Note that, if necessary, by increasing k2 we can assume that Lλk < η.
By choosing η and k2 we have dY (gkh(z), yk) = dY (hfk(z), hh−1(yk)) < Lλi <

Lλ
k
2 for k ≥ k2, hence h(z) is the required point and g has the SELmSP with

constants L and λ
1
2 . The remaining part is similar.

Proposition 2.4. If f is a surjection that has the SELmSP, then so does fn

for all n > 0.

Proof. Fix n > 0 and suppose λ ∈ (0, 1) and L > 0 are the constants in
definition of the SELmSP for f . Let ξ = {xi}∞i=0 be a sequence which satisfies
the relation (1.1) with constant λn in place of λ for the map fn, define the
sequence η = {yi}∞i=0 with

yk =

{
x0 k = 0,
fk−nq−1(xq+1) nq < k ≤ n(q + 1).

Indeed,

η ={x0, x1, f(x1), f2(x1), . . . , fn−1(x1), x2, f(x2), f2(x2), . . . ,

fn−1(x2), x3, f(x3), f2(x3), . . . , fn−1(x3), . . . }
then for k = nq we have

d(f(yk), yk+1) = d(fn(xq), xq+1) < (λn)q = λk.

So, η = {yi}∞i=0 satisfies the relation (1.2) for the map f . Hence there exists
z ∈ X such that d(fk(z), yk) < Lλk. If we put k = nq − (n − 1) in the last
inequality we get yk = xq, and d

(
(fn)q(p), xq

)
< Lλnq−(n−1) = Lλ−(n−1)(λn)q,

which p = f−(n−1)(z). Therefore fn has the SELmSP with constants λn and
L0 = Lλ−(n−1) �

Definition. A diffeomorphism φ satisfies Axiom A if Per(φ) = Ω(φ) is a
hyperbolic set, which Ω(φ) is the set of non-wandering points of φ.

Let us remind the reader of the Smale’s spectral decomposition Theorem [9].
If φ satisfies Axiom A property, then there is a unique representation of Ω(φ),

Ω(φ) = Ω1 ∪ · · · ∪ Ωk

as a disjoint union of closed φ-invariant sets (called basic set) such that

(1) each Ωi is a locally maximal hyperbolic set of φ.
(2) φ is topologically transitive on each Ωi.

(3) each Ωi is a disjoint union of closed sets Ωji , 1 ≤ j ≤ mi, the diffeo-

morphism φ cyclically permutes the sets Ωji , and φmi is topologically

mixing on each Ωji .
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We use the following lemma, which is proved in [10, Lemma 1].

Lemma 2.5. If a diffeomorphism φ is Ω-stable and the sequence {xk} satisfies
limk→0 d(φ(xk), xk+1) = 0, then there exists a basic set Ωi such that

d(Ωi, xk)→ 0, k →∞.

3. Ω-stable implies SELmSP

Now, we are going to prove ΩS ⊂ SELmSP .

Theorem 3.1. If a diffeomorphism φ is Ω-stable, then it has the SELmSP.

Proof. Let Ω(φ) be the non-wandering set of φ, since φ is Ω-stable it satisfies
in Axiom A property, so Ω(φ) is a hyperbolic set. Therefore, by Theorem 2.3
there exists a neighborhood W of Ω(φ) on which φ has the SELmSP for some
λ ∈ (0, 1) and L > 0. Now, if a sequence {xk} in W satisfies the relation (1.1),
then by Lemma 2.5, there exists a basic set Ωi such that

d(Ωi, xk)→ 0, k →∞.
So, there exists k0 ≥ k1 such that {xk}k≥k0 ⊂ W . Hence there exist p ∈ M
and k2 ∈ N so that

d(φk(p), xk) ≤ Lλk, k ≥ k2. �

Definition. If (X, d) is a compact metric space and f : X → X is a homeo-
morphism, then f is called L-hyperbolic if

(1) f is a Lipschitz homeomorphism;
(2) There is ε0 > 0 such that for any 0 < ε < ε0, there exists δ > 0 such

that for any two points x, y with d(x, y) < δ, W s
ε (x) ∩Wu

ε (y) consists
of a single point α(x, y);

(3) There is a constant κ > 0 such that

d(α(x, y), x) ≤ κd(x, y), d(α(x, y), y) ≤ κd(x, y);

(4) There are ∆, ν ∈ (0, 1) such that for all x ∈ X,

d(fn(x), fn(y)) ≤ νnd(x, y) for y ∈W s
∆(x), n ≥ 0,

d(f−n(x), f−n(y)) ≤ νnd(x, y) for y ∈Wu
∆(x), n ≥ 0.

In analogous to the proof of Theorem 2.3 in [1], it is easy to prove the
following result.

Theorem 3.2. Let f : X → X be an L-hyperbolic homeomorphism on a
compact metric space (X, d). Then f has the SELmSP.

Proof. In [13], it was shown that an L-hyperbolic homeomorphism has the
LpSP. Take λ2 = ν ∈ (0, 1) and repeat the steps of the proof [1, Theorem 2.3].
Note that here ν is the constant in the definition of L-hyperbolicity. �

Theorem 3.3 ([13]). Let f be a homeomorphism on a compact metric space
X. Then the following conditions are equivalent:
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(1) f is expansive and has the POTP.
(2) There is a compatible metric D for X such that f is L-hyperbolic.
(3) (X, f) is a Smale space.

By using the above theorem, we have the following corollaries.

Corollary 3.4. Let f : X → X be an expansive homeomorphism on a compact
metric space having the POTP. Then there exists a compatible metric D on X
such that f has the SELmSP with respect to D.

Corollary 3.5. Let (X, f) be a Smale space. Then there exists a compatible
metric on X such that f has SELmSP with respect to D.

In the following, we are going to show that the SELmSP holds for a class
of non-homeomorphisms. Precisely, we show that the SELmSP holds for pos-
itively expansive maps having the POTP. In [1, Corollary 3.1], the author
deduced that expansive homeomorphisms on a compact metric space with the
POTP also have the exponential limit shadowing property. Here, we are going
to extend this result for positively expansive maps.

Theorem 3.6. Let f : X → X be a positively expansive map on a compact
metric space X having the LpSP. Then f has also the SELmSP.

Proof. Let δ > 0 be an expansive constant for f , without losing the generality
assume that 0 < δ < 1. Take λ = δ, and suppose that {xi}i≥0 ⊂ X is a
sequence with

d(f(xk), xk+1) ≤ λk, k ≥ k1, k1 ∈ N.

Take L > 0, and 0 < δ0 < δ by the LpSP, and let 0 < ∆ < δ0 be given. Choose
k2 ∈ N large enough to have λk < min{δ0, ∆

2L} for all k ≥ k2. Then by the
LpSP for each fixed k ≥ k2 there exists yk such that

d(f i(yk), xi) ≤ Lλk <
∆

2
, i ≥ k ≥ k2.

If we take z = yk2 , then we have

d(f i(z), f i(yk)) ≤ d(f i(yk), xi) + d(f i(z), xi)

<
∆

2
+

∆

2
= ∆, i ≥ k ≥ k2.

So, we get

d(f i+k(yk), f i+k(z)) < ∆, i ≥ 0.

Hence, by expansivity, it follows fk(yk) = fk(z). Therefore, by the above
inequality we obtain

d(fk(z), xk) = d(fk(yk), xk) ≤ Lλk, k ≥ k2. �
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It is well-known that for positively expansive maps on a compact metric
space, being an open map, the standard shadowing property and the Lipschitz
shadowing are all equivalent [14, Theorem 1]. So, readily we get the following
result.

Corollary 3.7. Suppose that f : X → X is a positively expansive map on a
compact metric space. If f has the POTP (or equivalently being an open map),
then it has the SELmSP.

4. Examples

The following example shows that not every system has the SELmSP prop-
erty.

Example 4.1. Let X = {0, 1, 1
2 , . . . } be a metric space with the usual metric

on R, and define f(0) = 1, f( 1
n ) = 1

n+1 . Now, take (xi)i∈N = {1, 1
2 , . . . } so we

have d(f(xi), xi+1) = 0. It can be easily shown that f i(z) = z
iz+1 for every

i > 0. Hence for every L > 0 and λ ∈ (0, 1), there are no points z ∈ X such
that d(f i(z), xi) ≤ Lλi.

In the following, we prove that the one-sided shift dynamical system has the
SELmSP.

Example 4.2. The shift (Σ+
2 , σ) has the SELmSP.

Proof. Although, the proof follows by Corollary 3.7, but here we give a direct

proof. We use the metric d(x, y) = Σ∞i=0
|xi−yi|

2i , which generates the product

topology on Σ+
2 . We show that σ has the SELmSP with constants λ = 1

2 , L = 1.

Let {x(i)}∞i=0 ⊂ Σ+
2 be a sequence with

d(σ(x(i)), x(i+1)) < λi, i ≥ 0.

Therefore, it is easy to see that for all i ≥ 0 we have x
(i)
j = x

(i+1)
j−1 , 1 ≤ j ≤ i+1.

Put z = (x
(0)
0 x

(1)
0 · · · ), that is for all i ≥ 0, set zi = x

(i)
0 . Now it can be shown

that

d(σi(z), x(i)) = d(x
(i)
0 x

(i+1)
0 · · ·x(2i+1)

0 · · · , x(i)
0 x

(i)
1 · · ·x

(i)
i+1 · · · )

< λi+1 < λi, i ≥ 0.

Note that we have used x
(i)
j = x

(i+j)
0 , 1 ≤ j ≤ i+1, in the above inequality. �

The next example, which is called a permutation of two points, is clearly
an open positively expansive map on a compact metric space that does not
have the two-sided limit shadowing. However, we observe that by Corollary
3.7, it has the strong exponential limit-shadowing. Therefore, the SELmSP is
different from the two-sided limit shadowing.
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Example 4.3. Let X = {a, b} and define f(a) = b and f(b) = a, so f is a
homeomorphism on X. Fix 0 < λ < 1, for each exponentially-limit pseudo-
orbit {xn}n≥0 (relation (1.1)) there exists N ∈ N such that xN+k = a, if k
is even or xN+k = b, if k is odd. In other words, each exponentially limit
pseudo-orbit is, by neglecting a finite beginning terms, a periodic sequence of
the form ab or ba. Then either z = a or b, exponentially limit shadows the
sequence {xn}n≥0, i.e., the relation (1.2) holds with constants λ ∈ (0, 1) and
L = 1.

Remark 4.4. It can be easily shown that the above example is transitive, but
not topologically mixing (and since it has the POTP, so equivalently not chain
mixing). Therefore, the chain mixing (and topologically mixing) is not neces-
sary for the SELmSP.

Remark 4.5. Sakai in [13, Example 4.2], shows that the subshifts of finite type
or briefly SFT are L-hyperbolic. So, by Theorem 3.2, they have the SELmSP.
On the other hand, there are examples of SFT in [2], which are not chain
transitive. Therefore, chain transitivity (and topological transitivity) is not
necessary for the SELmSP.

We can see that a dynamical system with the POTP need not have the
SELmSP, but for expansive homeomorphisms on compact metric spaces, it has
by Corollary 3.4. Note that in [1, Example 4.1], it is proved that the following
example does not have the ELmSP, so it does not have the SELmSP. However,
by using [9, Theorem 3.1.1], it has the POTP. In addition, by [12], there is
an Ω-stable diffeomorphism that does not have the weak shadowing (and so
does not the POTP). That is, the SELmSP does not imply the POTP and vice
versa.

Example 4.6. Consider the unit circle with the coordinate x ∈ [0, 1). Let φ
be a dynamical system on S1 generated by the map f : S1 → S1 defined by
f(x) = x− x2(x− 1

2 )(x− 1)2. Easily, φ has two fixed points {0, 1
2}.

Remark 4.7. Note that by [9, Theorem 3.1.3], the above example also has the
LmSP. Hence, the LmSP does not imply the SELmSP.

If X is a totally disconnected compact metric space having at least two
points, then it is easy to show that the identity map has the SELmSP. However,
by [5, Example 5.1], the identity map does not have the asymptotic average
shadowing property. Therefore, the following corollary is obvious.

Corollary 4.8. The SELmSP does not imply the asymptotic average shadowing
property (and so the specification property).

5. Conclusion

In this paper, we studied the strong exponential limit shadowing (SELmSP)
as a new kind of limit shadowing. We show that the SELmSP exists near a
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hyperbolic set of a diffeomorphism. Also, the Ω-stable dynamical systems have
this kind of limit shadowing. In addition, in a compact metric space any L-
hyperbolic dynamical system has the SELmSP. Moreover, Examples 4.3, 4.6
and Corollary 3.7 show that this limit shadowing is different from the usual
shadowing, the limit shadowing, the asymptotic average shadowing and the
two-sided limit shadowing property. Besides, we prove that open positively
expansive maps have the strong exponential limit shadowing.
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