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CONTINUOUS SHADOWING AND INVERSE
SHADOWING FOR FLOWS

Keonhee Lee*, Manseob Lee**, and Zoonhee Lee***

Abstract. The notions of continuous shadowing and inverse shad-
owing for flows are introduced, and show that an expansive flow on
a compact manifold with the shadowing property has the continu-
ous shadowing property. Moreover it is proved that the continuous
shadowing property implies the inverse shadowing property.

1. Introduction

Let M be a compact smooth manifold with a Riemannian metric d,
and consider a C1-vector field X on M and the system of differential
equations

ẋ = X(x)(1)

Let χ1(M) be the set of all C1-vector fields on M with the C1-
topology, and let F : M × R −→ M be the flow induced by the sys-
tem (1). We shall write xt instead of F (x, t) for x ∈ M and t ∈ R for
simplicity. For δ, τ > 0 we say that a mapping

φ : R −→ M

is a (δ, τ)-pseudo solution of system (1) if there exists an increasing
sequence {tk ∈ R : k ∈ Z} such that

(i) t0 = 0,
(ii) tk+1 − tk ≥ τ ,
(iii) limt→t+k

φ(t) = φ(tk),

(iv) φ̇(t) = X(φ(t)) for t ∈ (tk, tk+1),
(v) d(φ(tk), φ−(tk)) < δ,
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where φ−(tk) = limt→t−k
φ(t) and k ∈ Z.

For δ, τ > 0 we say that a mapping Φ : M×R −→ M is a (δ, τ)-method
for F if, for any x ∈ M , the map Φx : R −→ M defined by

Φx(t) = Φ(x, t), t ∈ R,

is a (δ, τ)-pseudo solution of system (1). A method Φ is said to be
complete if Φ(x, 0) = x for all x ∈ M . Note that a (δ, τ)-method for F
can be considered as a family of (δ, τ)-pseudo solution of system (1). A
method Φ of F is said to be continuous if the map

Φ̃ : M −→ MR

given by

Φ̃(x)(t) = Φ(x, t), x ∈ M, t ∈ R
is continuous under the topology of compact convergence on MR, where
MR denotes the set of all functions from R into M . The set of all
complete (δ, τ)-methods [resp. complete continuous (δ, τ)-methods] for
F will be denote by Ta(δ, τ, F ) [resp. Tc(δ, τ, F )]. It is clear that if Y
is another vector field on M which is sufficiently close to X then the
system

ẋ = Y (x)(2)

induces a complete continuous method for F .
Let Th(δ, τ, F ) be the set of all complete continuous (δ, τ)-methods

for F which are induced by system (2) with d0(X, Y ) < δ, where d0 is a
C0-metric on χ1(M).

Let C(R) be the set of all continuous maps from R to itself, and we
let

Rep = {h ∈ C(R) : h(t) < h(s) for t < s, h(0) = 0},
Rep∗ = {h ∈ Rep : h(R) = R}

and

Rep(ε) = {h ∈ Rep∗ :| h(s)− h(t)
s− t

|6 ε, (t 6= s)}, (ε > 0).

Each element of Rep [ or Rep∗, Rep(ε)] is called a reparametrization.
We say that a (δ, τ)-pseudo solution φ of (1) is weakly ε-shadowed [resp.
normally ε-shadowed, strongly ε-shadowed]) by a point x ∈ M if there
is h ∈ Rep [resp. h ∈ Rep∗, h ∈ Rep(ε)] such that

d(xh(t), φ(t)) < ε

for all t ∈ R.
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We say that the flow F of system (1) has the shadowing property [or
pseudo orbit tracing property] if for any ε > 0 and τ > 0, there exists
δ > 0 such that any (δ, τ)-pseudo solution of system (1) is normally
ε-shadowed by some point of M .

2. Continuous shadowing

In this section, we introduce the concept of continuous shadowing for
flows. Let

Pα(δ, τ, F ) =
⋃{Φx : x ∈ M, Φ ∈ Tα(δ, τ, F )} ⊂ MR

=
⋃

x∈M,Φ∈Tα(δ,τ,F ) Φx(R),

where α = a, c, h. Clearly we have

Ph(δ, τ, F ) ⊂ Pc(δ, τ, F ) ⊂ Pa(δ, τ, F ).

Definition 2.1. We say that the flow F has the shadowing property
with respect to the class Tα [or Tα-shadowing property], α = a, c, h if for
any ε > 0 and τ > 0 there exists δ > 0 and a map γ : P(δ, τ, F ) −→ M
such that for any (δ, τ)-pseudo solution Φx ∈ Pα, there exists h ∈ Rep∗
for which

d(γ(Φx)h(t), Φx(t)) < ε

for all t ∈ R. If γ is continuous, then we say that F has the continuous
shadowing with respect to the class Tα.

It is easy to show that the flow F has the shadowing property with
respect to the class Ta if and only if it has the shadowing property in the
original sense. Clearly we see that the Ta-shadowing property implies
the Tc-shadowing property.

Definition 2.2. We say that the flow F has the inverse shadowing
property with respect to the class Tα [or Tα-inverse shadowing property],
α = a, c, h, if for any ε > 0, τ > 0, there exists δ > 0 such that for any
(δ, τ)-method Φ ∈ Tα(δ, τ, F ), there exists a map s : M −→ M which
has the following property: for any point y ∈ M there exists h ∈ Rep∗
such that

d(yh(t), Φs(y)(t)) < ε

for all t ∈ R. If s is continuous, then we say that F has the continuous
inverse shadowing property.
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Definition 2.3. We say that a flow F on a compact manifold M is
expansive if for any ε > 0, there exists δ > 0 with the property that
if d(xt, ys(t)) < δ for all t ∈ R, for a pair of points x, y ∈ M and
a continuous map s : R −→ R with s(0) = 0, then y = xt, where
|t| < ε. The constant δ > 0 is said to be an expansive constant of F
corresponding to ε.

It is clear from the definition that there are only a finite number of
fixed points for an expansive flow and each is an isolated point of M .
This reduces the study of expansive flows to those without fixed points,
and so we assume that all the expansive flows on M do not have fixed
points throughout the section.

Lemma 2.4. ([5]). A flow F on M is expansive if and only if for all
ε > 0, there exists r > 0 such that if t = (ti)∞−∞, u = (ui)∞−∞ are doubly
infinite sequences of real numbers with u0 = t0 = 0, 0 < ti+1 − ti ≤ r,
|ui+1 − ui| ≤ r, ti −→ ∞, t−i −→ −∞, as i −→ ∞, and if x, y ∈ M
satisfy d(xti, yui) ≤ r for all i ∈ Z, then there exists t such that |t| < ε
and y = xt.

Lemma 2.5. ([5]). Let F be an expansive flow. Then there is T0 > 0
such that for every T satisfying 0 < T < T0, there exists γ0 > 0 with
d(xT, x) ≥ γ0 for every x ∈ M .

Theorem 2.6. If a flow F on a compact manifold M is expansive
and has the shadowing property then it has the continuous shadowing
property with respect to the class Tα.

Proof. Let τ > 0 be arbitrary. Take T0 as in lemma 2.5, choose ε > 0
with ε < 1

2T0 and select γ0 > 0 as in lemma 2.4 for the ε. Then we can
choose γ1 > 0 with d(y(1

2γ0), y) ≥ γ1 for all y ∈ M by Lemma 2.5. Let
ε′ > 0 be an expansive constant corresponding to γ0 with ε′ < γ1. Since
F has the shadowing property, given ε′ > 0 and τ > 0, there is δ > 0
such that any (δ, τ)-pseudo solution is 1

12ε′-shadowed by some point of
M . For any point x ∈ M , there are many other (δ, τ)-pseudo solutions
Φx, Ψx . . . . Fix a (δ, τ)-pseudo solution Φx : R −→ M with Φx(0) = x.
Then by expansiveness of F , any (δ, τ)-pseudo solution is 1

6ε′-shadowed
by unique real orbit of F , where ε′ < ε.

Define a set AΦ
y by

AΦ
y = {x ∈ M | for any η, T > 0 there is a homeomorphism

α : R −→ R with α(0) = 0 such that
d(xα(t),Φy(t)) < 1

6ε′ + η for all t ∈ [−T, T ]}.
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Then it is clear that Ay ⊂ O(F, z) for some z ∈ M , and have the
following two properties;

(1) the length of the interval {t ∈ R : F (z, t) ∈ AΦ
y } is less than ε,

(2) the set Ay is closed in M .

Define γ : Pc(δ, τ, F ) −→ M by

γ(Φx) = L.L.AΦ
x ,

where L.L.AΦ
x is the largest limit point of AΦ

x . Define a set AΦ
y.η.T by

AΦ
y.η.T = { x ∈ M | there exists a homeomorphism α : R −→ R

such that α(0) = 0, d(xα(t), Φy(t)) < 1
6ε′ + η

for all t ∈ [−T, T ]}.
Then we can easily check that

AΦ
y.η.T =

⋂

i

AΦ
y.ηi.Ti

,

where ηi −→ 0, Ti −→∞ as i −→ 0.
Now we will show that the map γ : Pc(δ, τ, F ) −→ M is continuous.

Let {Ψ(n)
yn } be a sequence in Pc(δ, τ, F ) such that Ψ(n)

yn −→ Φy. Assume
that if n 6= k then Ψ(n) 6= Ψ(k). Let

AΨ(n)

yn.η.T = { x ∈ M | there exists a homeomorphism β : R −→ R

such that β(0) = 0, d(xβ(t), Ψ(n)
yn (t)) < 1

6ε′ + η

for all t ∈ [−T, T ]}.
Then we have

AΨ(n)

yn
=

⋂

i

AΨ(n)

yn.ηi.Ti
,

where ηi −→ 0, Ti −→ ∞ as i −→ 0. It is clear that AΦ
y and AΨ(n)

yn
are

closed subsets of M .
Let M∗ be the set of closed subsets of M with the Hausdorff metric

R. Without loss of generality, we may assume that AΨ(n)

yn
−→ Az ∈ M∗

as n −→∞.
First of all we prove the following claim:

Claim AΦ
y = Az.

To show the claim, we need following two lemmas 2.7 and 2.8.
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Lemma 2.7. For every ηi, Ti, there are η′i, T ′i with η′i < ηi, Ti < T ′i
and n0 such that for all n ≥ n0,

AΨ(n)

yn.η′i.T
′
i
⊂ AΦ

y.ηi.Ti
.

Proof. Let η′i = 1
2ηi and Ti 6 T ′i . If Ψ(n)

yn is sufficiently close to Φy,
then for given η′i = 1

2ηi, Ti 6 T ′i , there is a homeomorphism hn with
hn(0) = 0 and

d(Ψ(n)
yn

(hn(t)), Φy(t)) <
ηi

2
for all t ∈ [−T ′i , T

′
i ] n ≥ n0. Let x ∈ AΨ(n)

yn.η′i.T
′
i
, then there is a homeo-

morphism β : R −→ R with β(0) = 0 such that

d(xβ(t),Ψ(n)
yn

(t)) <
1
6
ε′ +

ηi

2
for all t ∈ [−T ′i , T

′
i ]. Then we have

d(xβ ◦ hn(t), Φy(t)) 6 (xβ(hn(t)), Ψ(n)
yn

(hn(t))) + d(Ψ(n)
yn

(hn(t)),Φy(t))

<
1
6
ε′ + ηi

for all t ∈ [−T ′i , T
′
i ].

Lemma 2.8. For every ηi, Ti, there is a η′i, T ′i with η′i < ηi, Ti < T ′i
and n0 such that for all n ≥ n0, AΦ

y.η′i.T
′
i
⊂ AΨ(n)

yn.ηi.Ti
.

Proof. Let x ∈ AΦ
y.η′i.T

′
i
, where ηi

′ = ηi
2 and Ti 6 T ′i . Then there is a

homeomorphism α : R −→ R with α(0) = 0 such that

d(xα(t), Φy(t)) <
1
6
ε′ +

ηi

2
for all t ∈ [−T ′i , T

′
i ]. If Ψ(n)

yn is sufficiently close to Φy, then there is n0

such that
d(Ψ(n)

yn
(hn(t)), Φy(t)) <

ηi

2
for n ≥ n0, all t ∈ [−T ′i , T

′
i ] and for a homeomorphism hn : R −→ R,

with hn(0) = 0. Then we get

d(xα ◦ hn(t),Ψ(n)
yn

(t)) 6 d(xα ◦ hn(t), Φy(hn(t))) + d(Φy(hn(t)), Ψ(n)
yn

(t))

<
1
6
ε′ + ηi

for all t ∈ [−T ′i , T
′
i ].

Now we prove the above claim by the following two steps.
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Step1. If p /∈ AΦ
y , then p /∈ AΦ

y =
⋂

i A
Φ
y.ηi.Ti

. Hence there are ηi, Ti

such that p /∈ AΦ
y =

⋂
i A

Φ
y.ηi.Ti

. By lemma 2.7, there are η′i, T ′i and n0

such that
AΨ(n)

yn.η′i.T
′
i
⊂ AΦ

y.ηi.Ti

for all n ≥ n0. This implies that p /∈ Az.

Step 2. Let p /∈ Az. Then there is η > 0 such that d(p,Az) > η.
(Az is closed subset of M). Then there is η0 such that for all n ≥ n0,
R(AΨ(n)

yn
, Az) < η0 < η, where R is Hausdorff metric in M∗. This implies

that p /∈ AΨ(n)

yn
for all n ≥ n0. Since p /∈ AΨ(n)

yn
, there are ηn > 0, Tn > 0

such that p /∈ AΨ(n)

yn.ηn.Tn
for all n ≥ n0. By lemma 2.8, there are η′n > 0,

T ′n > 0 such that
AΦ

y ⊂ AΦ
y.η′n.T ′n ⊂ AΨ(n)

yn.ηn.Tn

for all n ≥ n0. This means that p /∈ AΦ
y , and so completes our proof.

Lemma 2.9. ([5]). For all λ > 0, there are η > 0, T > 0 such that
d(x,AΦ

y ) < λ, for every y ∈ M and all x ∈ AΦ
y.η.T .

Now we are going to show that the map γ is continuous. For our
purpose, we assume that {yn} and {zn} are sequences of point in M so
that zn = L.L.AΨ(n)

yn
for all n. (i.e. γ(Ψ(n)

yn ) = zn). And assume that

Ψ(n)
yn −→ Φy, z = L.L.AΦ

y , where AΦ
y = Az. From the compactness of

M , {zn} has a convergent subsequence, so without loss of generality, we
may assume that zn −→ z′. It is obvious from the step 1 of the claim
that z ∈ AΦ

y = Az.

Let x be any point in Az and let {λi}i∈Z be a convergent subsequence
of positive real numbers with 0 as the only limit point. For the conve-
nience of notation, we denote ki ≡ k(i). If Ψ(n)

yn −→ Φy then there is a
sequence {yk(i)} such that

d(Ψ(k(i))
yk(i)

(hk(i)(t)), Φy(t)) <
1
2
ηi

for all t ∈ [−Ti, Ti], i ∈ N and for a homeomorphism hk(i) ∈ Rep∗ with
hk(i)(0) = 0.

Since x ∈ Az = AΦ
y , there is a homeomorphism αi : R −→ R with

αi(0) = 0 such that

d(xαi(t), Φy(t)) <
1
6
ε′ +

1
2
ηi
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for t ∈ [−Ti, Ti]. Therefore we get

d(xαi(t), Ψ(k(i))
yk(i)

(hk(i)(t))) 6 d(xαi(t), Φy(t)) + d(Φy(t), Ψ(k(i))
yk(i)

(hk(i)(t)))

<
1
6
ε′ + ηi

for all t ∈ [−Ti, Ti] and i ∈ N. From this, we have x ∈ AΨ(k(i))

yk(i).ηi.Ti
. If

we choose ηi, Ti for all λi as in Lemma 2.9, then we get d(x,AΨ(k(i))

yk(i)
) < λi

for all i. Choose xk(i) ∈ AΨ(k(i))

yk(i)
such that

d(x, xk(i)) = d(x,AΨ(k(i))

yK(i)
) = λi

(This can be done because AΨ(k(i))

yk(i)
is closed). Obviously xk(i) −→ x

as i −→ ∞. Since zk(i) = L.L.AΨ(k(i))

yk(i)
, there are wk(i) ≥ 0 such that

zk(i) = xk(i)wk(i). Also zk(i) −→ z′, and hence z′ = xw with w ≥ 0 for
every x ∈ Az = AΦ

y . This means that z′ is the largest limit point of AΦ
y ,

i.e. L.L.AΦ
y . Since the largest limit point of AΦ

y is unique, we have z = z′.
By now we have proved that every convergent subsequence of {zn} has a
limit point (z), and this means that zn −→ z. Consequently we proved
that γ is continuous, and so completes the proof of our theorem.

3. Ta-Shadowing

Definition 3.1. A flow F is said to be have a finite shadowing prop-
erty if for every ε, there is δ > 0 such that every finite (δ, 1)-pseudo
solution is ε-traced by an orbit of F .

Lemma 3.2. ([5]). Suppose F is a flow with no fixed points. Then
there is a T0 > 0 such that if 0 < T < T0, there exists λT > 0 such that
d(x, y) < λT implies that d(xT, y) > λT for all x, y ∈ M .

Proposition 3.3. ([5]). Every fixed point free flow with the finite
shadowing property has the shadowing property.

Proposition 3.4. ([5]). Let F be a flow with the following proper-
ties: if for every ε > 0, there exists δ > 0 such that every finite (δ, 1)-
pseudo solution φ : [−Ti, Ti] −→ M , ti ∈ [−Ti, Ti] ⊂ R and xi = φ(ti),
−k 6 i 6 k, 1 6 ti+1 − ti 6 2, is ε-traced by an orbit of F . Then F has
the finite shadowing property.
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Let F be a C1-flow on a compact manifold M generated by ẋ = X(x),
and let L(F ) = {x|X(x) = 0}. (i.e. L(F ) is a set of fixed points)

Now given a non-zero vector Y ∈ TxM , where x /∈ L(F ) define the in-
clination of Y relative to F to be the length of the normalized difference,
that is

σ(Y ) = ‖ 1
‖Y ‖Y − 1

‖X(x)‖X(x)‖ .

Lemma 3.5. Given ε > 0 and a flow F on M , suppose γ is a C1-curve
in M(an embedded closed interval or circle) such that at each point x
in the image of γ one of the following conditions hold;

(i) ‖Ḟ (x) = X(x)‖ < 1
2ε , or

(ii) x /∈ L(F ), and γ has inclination σ < ε
‖Ḟ‖ at x.

Then, for any neighborhood U of the image of γ, there exists a flow ψ
on M satisfying

(a) ψ̇ = Ḟ off U
(b) ‖ψ̇ − Ḟ‖ < ε on M
(c) γ is an (segment of an) integral curve of ψ.

Theorem 3.6. Let F be a fixed point free flow. Then F has the
shadowing property if and only if it has the Th-shadowing property.

Proof. We need only necessary condition. Given ε > 0, without loss
of generality take T0 > 0 as in Lemma 2.5, and assume 0 < ε < T0.
Choose 0 < ε′ < 1

3ε such that if x = yt with |t| < ε′ then d(x, y) < 1
3ε.

Take 0 < ξ < ε′′ such that d(x, y) < ξ implies that

d(xt, yt) < ε′′

for all t ∈ [0, 2]. By assumption, there exists δ > 0 satisfying Th-
shadowing property with respect to 1

2ξ. Take 0 < δ′ < δ such that
every C1-flow η on M , ‖η̇ − Ḟ‖ < δ′ implies that

d(η(·, t), F (·, t)) < δ

for all t ∈ [0, 2]. Take 0 < λ < δ′ (Later we are going to fix the value
λ). Now let φ : [0, T ] −→ M (φ(0) = x0) be a finite (1

3λ)-pseudo
solution of F such that there is a finite increasing sequence {ti}k

i=0 with
φ(ti) = xi, 0 6 i 6 k, and tk = T , t0 = 0 and 1 6 ti+1 − ti 6 2.
Then ({xi}k

i=0, ({si}k
i=0, )) be a pair of sequence with 1 6 si 6 2, where

si = ti+1− ti, 0 6 i 6 k− 1. Without loss of generality, we can choose a
sequence of distinct points ({xi

′}k
i=0 in M with the following properties

d(x′is, xis) < 1
3λ, for all 0 6 s 6 2. For positive si with 1 6 i 6 k, we

have
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d(xi
′si, xi+1

′) 6 d(xi
′si, xisi) + d(xisi, xi+1)+(3)

d(xi+1, xi+1
′) 6

1
3
λ +

1
3
λ +

1
3
λ = λ(4)

for all 0 6 i 6 k − 1. Let φ′ : [0,
∑k−1

j=0 sj ] −→ M such that φ′(t) =
x′i(t −

∑i−1
j=0 sj) if t ∈ [

∑i−1
j=0 sj ,

∑i
j=0 sj ]. Then φ′ is a finite (λ, 1)-

pseudo solution of F . Now take 0 < λ < δ′, choose λ small enough for
one to take a C1-curve

γ : [0,
k−1∑

j=0

sj ] −→ M

with the following properties;
(a) γ is a closed curve in M
(b) γ(tn) = xn

′ for 0 6 n 6 k

(c) γ has an inclination less than δ′
‖Ḟ‖ at every point x in the image of

γ.
Using Lemma 3.5, we see that there exists a C1-flow ψ on M such that

(i) γ is an integral curve of ψ

(ii) ‖ψ̇ − Ḟ‖ < δ′.
So we have

(i) ψx0
′(tn) = x′n

(ii) d(ψ(·, t), F (·, t)) < δ, for all t ∈ [0, 2].
Then ψ|[0,tk] : [0, tk] −→ M is a δ-pseudo solution of F . By assumption,
there is a point z ∈ M and α ∈ Rep∗ such that

d(zα(t), ψx0(t)) <
ξ

2
for all t ∈ [0, tk]. Then

d(φx0(t), zα(t)) 6 d(φxi(s), xis) + d(xis, x
′
is) + d(x′is, ψxi(s)) +

d(ψxi(s), zα(s)) 6 1
3λ + 1

3λ + δ + ξ
2 < λ + δ + ξ

2

where t ∈ [
∑i−1

j=0 sj ,
∑i

j=0 sj ], s = t−∑i−1
j=0 sj . If max{λ, δ, ξ

2} < ε
3 , then

d(φx0(t), zα(t)) < ε

for all t ∈ [0, tk]. Therefore F has the finite shadowing property. By
Proposition 3.3, F has the shadowing property.
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Remark 3.7. If F has fixed points then the finite shadowing property
does not imply the shadowing property in general (see [2]).

Let M ⊂ Rn be a compact metric space(n ≥ 1) with metric is ρ.
Assume that diam(M) 6 1. Let f : M −→ M be a homeomorphism,
and K be a suspension space of f under 1. i.e. K = {(x, t) ∈ M × R :
0 6 t 6 1}/(x, 1) ∼ (f(x), 0). Let d be the suspension metric on K
induced by ρ. We identify K = M × [0, 1), u = (x, t) ∈ M × [0, 1)
for all u ∈ K, M = M × {0} ⊂ K. Fix a point a ∈ M and set
e = (a, 1

2) ∈ M × R ⊂ Rn+1. Define a flow on K which has a unique
fixed point e.

U = U(e) = {x ∈ Rn+1 : |e− x| < 1
4
} .

Take a C∞-function C : Rn+1 −→ [0, 1] such that
(i) C(x) = 0 if x = e
(ii) 0 6 C(x) < 1 if x ∈ U
(iii) C(x) = 1 if x /∈ U

Let ϕ be a flow on Rn+1 defined by a vector field

(5)

{
ẋ1 = 0
ẋ2 = C(x) for x = (x1, x2) ∈ Rn × R = Rn+1

Consider the flow of K induced by the restriction of ϕ to M × [0, 1]
and denote by the same symbol ϕ. We say that (K,ϕ) is the singular
suspension of f with a fixed point e = (a, 1

2) .

Theorem 3.8. ([2]). Let f : M −→ M be a homeomorphism and
(K, ϕ) be a singular suspension of (M, f) with fixed point (a, 1

2). Assume
that M0 = M − {a} is dense in M . Then the following two properties
are pairwise equivalent:

(a) (M, f) has shadowing property;
(b) (K,ϕ) has finite shadowing property.

Example 3.9. Let I = [0, 1] ⊂ R, I0 = I − {0}. f : I −→ I be a
homeomorphism defined by

(6) f(x) =

{
1
2x, x ∈ [0, 2

3 ]
2x− 1, x ∈ [23 , 1]

Let (K,ϕ) be the singular suspension of (I, f) with fixed point e =
(0, 1

2). Komuro [2] showed that (K, ϕ) has the finite shadowing property
but it does not have the shadowing property and f has the shadowing
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property. We will show that (K, ϕ) has the finite shadowing but has
not Th-shadowing property. Let C : Rn+1 −→ [0, 1] be the C∞-function
which generate (K,ϕ). If there is a (K,ψ) flow with d0(ϕ,ψ) < δ, then
ψ has a fixed point in K. If not, then ψ is conjugate to a singular
suspension of (I, f). Since f has the shadowing property, ψ has the
shadowing property. But O(e, ϕ) is not ε-shadowed by any orbit of ψ.
This is a contradiction. By the continuity of C and C(e) = 0, there is a
closed neighborhood W̄e of e such that for every u ∈ W̄e, d(ut, e) < δ

2 ,
for 0 6 t 6 1. Assume that W̄e = {(x, t), 0 6 x 6 β, (β 6= 0), 1

2 − r 6 t 6
1
2 + r, r 6= 0}. Let C ′ : Rn+1 −→ [0, 1] be a C∞-function such that

(i) C ′(x) = 0 if x ∈ 1
2W̄e

(ii) C ′(x) = C(x) if x /∈ W̄e

(iii) and W̄e − 1
2W̄e linear extension from C ′(x) to C(x).

Let ψ be a vector field generated by C ′, then d0(ψ, ϕ) < δ. This means
that every orbits of ψ is a (δ, 1)-pseudo solution of ϕ. Let y = max{x ∈
I|(x, t) ∈ 1

2W̄e} . Then z = (y, t) ∈ 1
2W̄e, z′ = (y, s) ∈ W̄e − 1

2W̄e,where
s < t. We can easily show that O(ψ, z) is not ε-shadowed by any orbit
of ϕ. This shows that (K,ϕ) does not have the Th-inverse shadowing
property.

4. Continuous shadowing and inverse shadowing

Theorem 4.1. If a flow F has the Tα-continuous shadowing property
on a compact manifold M then it has the Tα-inverse shadowing property,
where α = a, c, h.

Proof. We only prove the theorem in the case of α = c. Let ε > 0,
τ > 0 be given. Take δ > 0 by the Tα-continuous shadowing property
corresponding to ε. Let Φ : M × R −→ M be an arbitrary continuous
(δ, τ)-method of F . Let

PΦ =
⋃
{Φx : x ∈ M} ⊂ Pc(δ, τ, F ) ⊂ MR.

Since F has the Tc-continuous shadowing property, there is a continuous
map γ : Pc(δ, τ, F ) −→ M such that for every Φx ∈ Pc(δ, τ, F ), there
exists a homeomorphism h ∈ Rep∗ with h(0) = 0 satisfying

d(γ(Φx)h(t), Φx(t)) < ε

for all t ∈ R. Let γ′ ≡ γ|PΦ
. By definition of a continuous method, the

map s = Φ̃ : M −→ PΦ ⊂ MR by s(x) = Φ̃(x) = Φx is continuous. Let
H = γ′◦s : M −→ M . Then H is a continuous map and d0(H, idM ) < ε.
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If ε is sufficiently small, H is surjective. For every x ∈ M , there are
y ∈ M and homeomorphism h ∈ Rep∗ with h(0) = 0 such that H(y) = x
and

d(γ(Φy)h(t), Φy(t)) < ε

for all t ∈ R. Then

d(xh(t), Φy(t)) = d(H(y)h(t),Φy(t)) = d(γ′ ◦ s(y)h(t), Φy(t))
= d(γ′(Φy)h(t), Φy(t)) = d(γ(Φy)h(t), Φy(t)) < ε

for all t ∈ R. This completes the proof.

Definition 4.2. We say that a flow F has the Tα-continuous inverse
shadowing property (α = a, c, h) if for any ε > 0 and τ > 0, there
exists δ > 0 such that for each (δ, τ)-method Φ ∈ Tα(δ, τ, F ) there is a
continuous map s : M −→ M such that for every point y ∈ M there is
a homeomorphism h ∈ Rep∗ with h(0) = 0 such that

d(yh(t), Φs(y)(t)) < ε

for all t ∈ R.

Theorem 4.3. If F has the Tα-continuous inverse shadowing prop-
erty then it has the Tα-shadowing property.

Proof. We only prove the theorem in the case of α = c. Let ε > 0,
τ > 0 be given. Choose δ > 0 by the Tc-continuous inverse shadowing
property corresponding to ε. Then there exists a continuous map s :
M −→ M such that for every y ∈ M there is a homeomorphism h ∈ Rep∗
with h(0) = 0 such that

d(yh(t), Φs(y)(t)) < ε

for all t ∈ R. If t = 0, then d(y, Φs(y)(0)) = d(y, s(y)) < ε. Since the
map s is continuous, it is surjective for small ε > 0. We claim that F has
the Tc-shadowing. Define γ : Pc(δ, τ, F ) −→ M as following; for each
Φx ∈ Pc(δ, τ, F ), there are x ∈ M and Φ ∈ Tc(δ, τ, F ) and a continuous
surjective map s : M −→ M such that Φx(0) = x. Choose y ∈ M with
s(y) = x and define γ(Φx) = y. Then γ is a desired map. For every
Φx ∈ Pc(δ, τ, F ) there is a y ∈ M such that γ(Φx) = y. Then

d(γ(Φx)h(t),Φx(t)) = d(yh(t), Φs(y)(t)) < ε

for all t ∈ R.

Corollary 4.4. If F is a fixed point free flow with the Th-continuous
inverse shadowing property then it has the Th-shadowing property.
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