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CONTINUOUS SHADOWING AND INVERSE
SHADOWING FOR FLOWS

KEONHEE LEE*, MANSEOB LEE**, AND ZOONHEE LEE***

ABSTRACT. The notions of continuous shadowing and inverse shad-
owing for flows are introduced, and show that an expansive flow on
a compact manifold with the shadowing property has the continu-
ous shadowing property. Moreover it is proved that the continuous
shadowing property implies the inverse shadowing property.

1. Introduction

Let M be a compact smooth manifold with a Riemannian metric d,
and consider a C'-vector field X on M and the system of differential
equations

(1) = X(x)

Let x'(M) be the set of all Cl-vector fields on M with the Cl-
topology, and let F' : M x R — M be the flow induced by the sys-
tem (1). We shall write xt instead of F(x,t) for x € M and t € R for
simplicity. For 4,7 > 0 we say that a mapping

¢ R— M

is a (0,7)-pseudo solution of system (1) if there exists an increasing
sequence {t; € R: k € Z} such that

(i) to =0,

(ii) tgoq — tp > 7,

)

(111) hmt_ng"' ¢( ) ¢(tk)7
)
)

(iv) o(t) = (925(75)) for t € (tx,trt1),
(v) d(¢(te), o (tr)) <0,
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where ¢_(t) = limtﬂtg ¢(t) and k € Z.

For ¢, 7 > 0 we say that a mapping ® : M xR — M is a (4, 7)-method
for F if, for any z € M, the map &, : R — M defined by

O, (t) = B(z,t), t € R,

is a (4, 7)-pseudo solution of system (1). A method ® is said to be
complete if ®(x,0) = x for all x € M. Note that a (J, 7)-method for F
can be considered as a family of (9, 7)-pseudo solution of system (1). A
method ® of F is said to be continuous if the map

d: M — ME
given by
d(z)(t) = ®(x,t), z€ M, teR

is continuous under the topology of compact convergence on M=®, where
MR denotes the set of all functions from R into M. The set of all
complete (0, 7)-methods [resp. complete continuous (6, 7)-methods] for
F will be denote by 7,(d, 7, F') [resp. Z.(0,7,F)]. It is clear that if Y
is another vector field on M which is sufficiently close to X then the
System

(2) & =Y(x)

induces a complete continuous method for F.

Let 75,(0, 7, F') be the set of all complete continuous (d, 7)-methods
for F' which are induced by system (2) with do(X,Y) < 8, where dj is a
CY%metric on x!(M).

Let C(R) be the set of all continuous maps from R to itself, and we
let

Rep = {h € C(R) : h(t) < h(s) for t < s, h(0) =0},
Rep® = {h € Rep : h(R) =R}
and
h(s) — h(t)
s—1

Rep(e) = {h € Rep™ | I<e, (t#39)}, (e>0).

Each element of Rep [ or Rep*, Rep(e)] is called a reparametrization.
We say that a (4, 7)-pseudo solution ¢ of (1) is weakly -shadowed [resp.
normally e-shadowed, strongly e-shadowed)) by a point x € M if there
is h € Rep [resp. h € Rep*, h € Rep(c)] such that

d(zh(t),d(t)) < e
for all t € R.
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We say that the flow F' of system (1) has the shadowing property [or
pseudo orbit tracing property| if for any € > 0 and 7 > 0, there exists
d > 0 such that any (6, 7)-pseudo solution of system (1) is normally
e-shadowed by some point of M.

2. Continuous shadowing

In this section, we introduce the concept of continuous shadowing for
flows. Let

Po(6, 7, F) =U{®r:2€ M, ®<c T, (5,7, F)} Cc M®
= U;ceM,cbeTa(&,r,F) ®,(R),
where a = a, ¢, h. Clearly we have
Pr(0, 7, F) C Pe(0, 7, F) C Po(6, 7, F).

DEFINITION 2.1. We say that the flow F' has the shadowing property
with respect to the class T, [or T,-shadowing property], o = a, ¢, h if for
any € > 0 and 7 > 0 there exists 6 > 0 and a map v : P(,7,F) — M
such that for any (6, T)-pseudo solution ®, € P,, there exists h € Rep*
for which

d(7(Pz)h(t), P(t)) < &

for all t € R. If v is continuous, then we say that F' has the continuous
shadowing with respect to the class 7.

It is easy to show that the flow F' has the shadowing property with
respect to the class 7, if and only if it has the shadowing property in the
original sense. Clearly we see that the 7,-shadowing property implies
the 7.-shadowing property.

DEFINITION 2.2. We say that the flow F' has the inverse shadowing
property with respect to the class 1, [or T,-inverse shadowing property],
a=a,c,h, if for any € > 0, 7 > 0, there exists 6 > 0 such that for any
(6, 7)-method ® € 71,(0, T, F), there exists a map s : M — M which
has the following property: for any point y € M there exists h € Rep*
such that

d(yh(t)7 (I)s(y) (t)) <e

for all t € R. If s is continuous, then we say that F has the continuous
inverse shadowing property.
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DEFINITION 2.3. We say that a low F' on a compact manifold M is
expansive if for any € > 0, there exists 6 > 0 with the property that
if d(xt,ys(t)) < o0 for all t € R, for a pair of points z,y € M and
a continuous map s : R — R with s(0) = 0, then y = xt, where
|t| < e. The constant 6 > 0 is said to be an expansive constant of F
corresponding to €.

It is clear from the definition that there are only a finite number of
fixed points for an expansive flow and each is an isolated point of M.
This reduces the study of expansive flows to those without fixed points,
and so we assume that all the expansive flows on M do not have fixed
points throughout the section.

LEMMA 2.4. ([5]). A flow F' on M is expansive if and only if for all
e > 0, there exists r > 0 such that if t = (t;)>,, u = (u;)>%, are doubly
infinite sequences of real numbers with ug =tg =0, 0 < t;41 — t; < 7,
|wiv1 —ui| < r, t; — o0, t_; — —o00, as i — oo, and if x,y € M
satisfy d(xt;,yu;) < r for all i € Z, then there exists t such that |t| < e
and y = xt.

LEMMA 2.5. ([5]). Let F' be an expansive flow. Then there is Ty > 0
such that for every T satisfying 0 < T' < Ty, there exists v > 0 with
d(xT,z) >~ for every x € M.

THEOREM 2.6. If a flow F' on a compact manifold M is expansive
and has the shadowing property then it has the continuous shadowing
property with respect to the class 7.

Proof. Let 7 > 0 be arbitrary. Take Ty as in lemma 2.5, choose € > 0
with € < %TD and select 79 > 0 as in lemma 2.4 for the €. Then we can
choose v; > 0 with d(y(%%),y) > for all y € M by Lemma 2.5. Let
¢’ > 0 be an expansive constant corresponding to vy with ¢/ < 7. Since
F has the shadowing property, given ¢/ > 0 and 7 > 0, there is § > 0
such that any (0, 7)-pseudo solution is %5’ -shadowed by some point of
M. For any point z € M, there are many other (J, 7)-pseudo solutions
¢, ¥, .... Fix a (J, 7)-pseudo solution @, : R — M with ®,(0) = z.
Then by expansiveness of F', any (6, 7)-pseudo solution is %5’ -shadowed
by unique real orbit of F', where &’ < ¢.

Define a set Ag’ by

AS = {z € M| for any n,T > 0 there is a homeomorphism
a: R — R with «(0) = 0 such that
d(za(t), ®y(t) < &' +n forall t e [-T,T]}.
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Then it is clear that A, C O(F,z) for some z € M, and have the
following two properties;

(1) the length of the interval {t € R : F(z,t) € AT} is less than ¢,
(2) the set A, is closed in M.

Define ~ : P.(0, 7, F)) — M by
v(®,) = L.L.A%,

where L.L.A2 is the largest limit point of A®. Define a set A?n-T by
Ag).n-T ={ x € M| there exists a homeomorphism «:R — R

such that «(0) =0, d(za(t),®,(t)) < 2’ +1n
for all ¢t € [-T,T]}.

Then we can easily check that
® @
Ay.n-T - ﬂ Ay.m-Ti7
i

where n;, — 0, T; — o0 as i — 0.

Now we will show that the map v : P.(d,7, F) — M is continuous.
Let {\IJZ(JZ)} be a sequence in P.(6, 7, F') such that \Ilz(,,:) — ®,. Assume
that if n # k then U™ £ WF) | Let

qu(n)

ynnT =1 @ € M| there exists a homeomorphism (:R — R

such that 3(0) =0, d(zf(t), \Iléz) (1) < &' +n
for all ¢t e [-T,T]}.

Then we have
wn) w(n)
Ayn - ﬂ Ayn-"?i-Ti’
i

where 17; — 0, T; — o0 as ¢ — 0. It is clear that Ag’ and A;I:fn) are
closed subsets of M.

Let M* be the set of closed subsets of M with the Hausdorff metric
R. Without loss of generality, we may assume that Az‘i fn) — A, e M*
as n — 00.

First of all we prove the following claim:
Claim A;I’ =A,.

To show the claim, we need following two lemmas 2.7 and 2.8. O
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LEMMA 2.7. For every n;, T;, there are n,, T, with n, < n;, T; < T
and ng such that for all n > ny,

w(n) )
Ayn~n§~T{ C Aym.Ti'
Proof. Let 1} = 3m; and T; < T]. 1f ‘1’3(42) is sufficiently close to @,,
then for given 7, = %ni, T; < T}, there is a homeomorphism h,, with
hn(0) =0 and

AT (1)), 2,(1)) < %

for all t € [-T/,T!] n > ng. Let = € A;’(m then there is a homeo-

nen; T}
morphism (: R — R with 3(0) = 0 such that
1 7
d(zp(t), oM (1) < ~&' + —
(@B(0), W(1) < e+

for all t € [T/, T ]. Then we have

d(23 0 (1), &y (1)) < (@B(hn (1)), W5 (ha (1)) + d(L5 (ha(2)), Dy (1))
< éé‘/ +
for all t € [T/, T/]. O

7 (]
LEMMA 2.8. For every n;, T;, there is a n}, T} with n} < n;, T; < T!
) w(n)
and ng such that for all n > ny, Ay-n§~T{ CA, it

Proof. Let x € Ag)-né-T{’ where ;" = & and T; < T]. Then there is a

homeomorphism a : R — R with «(0) = 0 such that

1 .
d(za(t), @,(1) < <&+ %
for all t € [T}, T]]. If \Iléz) is sufficiently close to ®,, then there is ng
such that

n i
AT (ha(), 2y (1) < 5
for n > ng, all t € [T/, T!] and for a homeomorphism h, : R — R,

1771

with h,(0) = 0. Then we get

d(za o hy(t), U (1)) < d(za 0 hy(t), By (hn(t))) + d(@y(hn(t)), T (1))

<1 "+
Z .
5 i

for all t € [T}, T]].

1)

Now we prove the above claim by the following two steps.
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Stepl. If p ¢ Ag’, then p ¢ Ag) =), Az?.m.Ti' Hence there are n;, T;
such that p ¢ AT = A;D.m.Ti' By lemma 2.7, there are 7;, T] and ng
such that

w(n) )
Ayn.ng.Ti’ C Ay,

for all n > ng. This implies that p ¢ A.,.

Step 2. Let p ¢ A,. Then there is n > 0 such that d(p, A,) > n.
(A, is closed subset of M). Then there is ny such that for all n > ng,

R(A;I’n(") ,Az) < mo < n, where R is Hausdorff metric in M*. This implies
that p ¢ Ay‘{fn) for all n > ng. Since p ¢ A;I’Tfn), there are n,, > 0, T, > 0

such that p ¢ A;I’:;;n_Tn for all n > ng. By lemma 2.8, there are 7], > 0,

T}, > 0 such that

P o w(n)
Ay - Ay.m’@.T{l - Ayn-nn~Tn

for all n > ng. This means that p ¢ Ag, and so completes our proof. [J

LEMMA 2.9. ([5]). For all A > 0, there are n > 0, T' > 0 such that

d(z,A3) < A, for every y € M and all x € Ag).n.T )

Now we are going to show that the map ~ is continuous. For our
purpose, we assume that {y,} and {z,} are sequences of point in M so
that z, = L.L.A;’:m for all n. (i.e. 7(\113(,,2)) = z,). And assume that
\Ifggz) — ®,, 2z = L.L.A;D, where A;D = A,. From the compactness of
M, {z,} has a convergent subsequence, so without loss of generality, we

may assume that z, — 2. It is obvious from the step 1 of the claim
that z € A} = A..

Let = be any point in A, and let {\;};cz be a convergent subsequence
of positive real numbers with 0 as the only limit point. For the conve-

)

nience of notation, we denote k; = k(). If \I'gfl
sequence {y(;)} such that

— ®, then there is a

i 1
d(\pgzgig)(hk(i) (1)), y(t)) < i

for all t € [T}, T;], i € N and for a homeomorphism hy;) € Rep* with
Since x € A, = Ag’ , there is a homeomorphism «; : R — R with
a;(0) = 0 such that

1 1
d(zai(t), B, (1)) < 2’ +
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for t € [=T;,T;]. Therefore we get
d(wo(t), é(ff)(hk(z)( ) < d(wai(t), ®y (1)) + d(@y (1), U (g (1))
<Ly,
6~ "
for all ¢t € [—T;,T;] and ¢ € N. From this, we have z € A;I’k(:z; )r; T
we choose n;, T; for all A; as in Lemma 2.9, then we get d(z, A;I’k(f; ))) < A

k(D))

Yo such that

for all i. Choose z;) € A

d(z, Tp) = d(z LAV =

YK (i)

\p( ()

(This can be done because A, is closed). Obviously zj;) — =

as 1 — 00. Since zp;) = L.L. Ag;:(kg P there are wy(;y = 0 such that

2h(i) = Th(i)Wh(s)- Also 2y — 2, and hence 2’ = zw with w > 0 for
every x € A, = Acyl’. This means that 2 is the largest limit point of Ag’,
ie. L.L.Ag’ . Since the largest limit point of Ag’ is unique, we have z = 2.
By now we have proved that every convergent subsequence of {z,} has a
limit point (z), and this means that z, — z. Consequently we proved
that ~ is continuous, and so completes the proof of our theorem.

3. 7,-Shadowing

DEFINITION 3.1. A flow F' is said to be have a finite shadowing prop-
erty if for every e, there is § > 0 such that every finite (,1)-pseudo
solution is e-traced by an orbit of F.

LEMMA 3.2. ([5]). Suppose F is a flow with no fixed points. Then
there is a Ty > 0 such that if 0 < T < Ty, there exists Ay > 0 such that
d(x,y) < Ap implies that d(zT,y) > Ar for all x,y € M.

PRrOPOSITION 3.3. ([5]). Every fixed point free flow with the finite
shadowing property has the shadowing property.

PrOPOSITION 3.4. ([5]). Let F be a flow with the following proper-
ties: if for every € > 0, there exists § > 0 such that every finite (d,1)-
pseudo solution ¢ : [-T;,T;] — M, t; € [-T;,T;] C R and z; = ¢(t;),
—k<i<k, 1 <tp1 —t; <2, is e-traced by an orbit of F. Then F has
the ﬁmte shadowing property.
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Let F be a C'-flow on a compact manifold M generated by # = X (z),
and let L(F') = {z|X(x) = 0}. (i.e. L(F) is a set of fixed points)

Now given a non-zero vector Y € T, M, where = ¢ L(F') define the in-
clination of Y relative to F' to be the length of the normalized difference,

that is
1

v el

LEMMA 3.5. Givene > 0 and a flow F on M, suppose v is a C'-curve
in M (an embedded closed interval or circle) such that at each point x
in the image of v one of the following conditions hold;

(i) |1F(z) = X(2)|| < 3¢, or

(ii) = ¢ L(F), and v has inclination o < m at x.

Then, for any neighborhood U of the image of ~y, there exists a flow ¥
on M satisfying

(a) = F off U

(b) Il — F|| <eonM

(c) v is an (segment of an) integral curve of 1.

1
oY) = I Y

THEOREM 3.6. Let F' be a fixed point free flow. Then F' has the
shadowing property if and only if it has the 7Tj,-shadowing property.

Proof. We need only necessary condition. Given € > 0, without loss
of generality take Ty > 0 as in Lemma 2.5, and assume 0 < ¢ < Tj.
Choose 0 < &’ < %e such that if z = yt with [t| < &’ then d(z,y) < ie.
Take 0 < & < &’ such that d(z,y) < £ implies that

d(zt,yt) < &”
for all ¢ € [0,2]. By assumption, there exists 6 > 0 satisfying 7~
shadowing property with respect to %5. Take 0 < & < § such that
every C'-flow i on M, |5 — F|| < &' implies that
d(n(a t)7 F(7 t)) <0

for all t € [0,2]. Take 0 < A < ¢ (Later we are going to fix the value
A). Now let ¢ : [0,T] — M (¢(0) = z0) be a finite (3))-pseudo
solution of F' such that there is a finite increasing sequence {ti}fzo with
o)) = x5, 0 < i < kyand t, =T, tg = 0 and 1 < t;41 — t; < 2.
Then ({z:}¥_,, ({si}%_,)) be a pair of sequence with 1 < s; < 2, where
s; = tip1 —ti, 0 <4 < k—1. Without loss of generality, we can choose a
sequence of distinct points ({x;'}¥_, in M with the following properties
d(zhs,x;s) < %)\, for all 0 < s < 2. For positive s; with 1 < ¢ < k, we
have
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(3) d(xi'si,wiv1) < d(x/si,wz‘si) + d(wz‘si,&?iﬂ)—i—
1
4 d(x;i1,x; )\ A /\ A
forall 0 < i < k—1. Let ¢ : [0, Zj 0 8j] — M such that ¢(t) =

it — Y0 Os]) if ¢+ €[00, 25— 5. Then ¢ is a finite (A, 1)-
pseudo solution of F. Now take 0 < A < ¢’, choose A small enough for
one to take a Cl-curve

with the following properties;
(a) «v is a closed curve in M
(b) v(tn) =z, for 0 <n < k
(¢) v has an inclination less than
7.
Using Lemma 3.5, we see that there exists a C'-flow ¥ on M such that

&

G at every point z in the image of

(i) 7 is an integral curve of v
(i) I — FI < d".
So we have

(i) %0/(75”) = .%';1
(i) d(t(-,1), F(-.1)) < &, for all £ € [0, 2].

Then wlg4,) : [0,tx] — M is a -pseudo solution of F'. By assumption,
there is a point z € M and a € Rep* such that

d(z0(0), (1) < 5

for all ¢t € [0,¢]. Then

d(d’azo (t)v Za(t)) < d(gbxz( ) ) + d($15 x;s) + d(gj;(g’ QZ)%(S)) +
A (5),20(s)) € DA+ DA+ 6§ < A5 S

where t € [Z] OSJ,E;:() sjl, s = t—Z;;% s;. If max{\, o, g} < §, then

d(ao (1), z0x(t)) < €

for all ¢t € [0,tx]. Therefore F' has the finite shadowing property. By
Proposition 3.3, F' has the shadowing property. O
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REMARK 3.7. If F' has fixed points then the finite shadowing property
does not imply the shadowing property in general (see [2]).

Let M C R™ be a compact metric space(n > 1) with metric is p.
Assume that diam(M) < 1. Let f : M — M be a homeomorphism,
and K be a suspension space of f under 1. i.e. K = {(x,t) € M xR :
0 <t<1}/(x,1) ~ (f(z),0). Let d be the suspension metric on K
induced by p. We identify K = M x [0,1), u = (z,t) € M x [0,1)
for all u € K, M = M x {0} C K. Fix a point a € M and set
e = (a, %) € M x R C R*"!. Define a flow on K which has a unique
fixed point e.

1
U= U(e):{xeR”+1:]e—x|<Z}.

Take a C*°-function C : R"™! — [0,1] such that
(i) C(x)=0ifz=e
(ii)) 0<Cx)<lifxe U
(iii) C(x)=1ifx ¢ U
Let ¢ be a flow on R™*! defined by a vector field

o) e
2y =C(x) for z=(v1,79) € R" x R =R"*!

Consider the flow of K induced by the restriction of ¢ to M x [0,1]
and denote by the same symbol ¢. We say that (K, ¢) is the singular
suspension of f with a fixed point e = (a, %) .

THEOREM 3.8. ([2]). Let f : M — M be a homeomorphism and
(K, ) be a singular suspension of (M, f) with fixed point (a, 3). Assume
that My = M — {a} is dense in M. Then the following two properties
are pairwise equivalent:

(a) (M, f) has shadowing property;
(b) (K, ) has finite shadowing property.

EXAMPLE 3.9. Let I = [0,1] C R, [y =1 —{0}. f:I — I be a
homeomorphism defined by

B 1, x €0, 2]
() () = { :

20— 1, z€[31]

Let (K, ¢) be the singular suspension of (I, f) with fixed point e =
(0, %) Komuro [2] showed that (K, ¢) has the finite shadowing property
but it does not have the shadowing property and f has the shadowing
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property. We will show that (K, ¢) has the finite shadowing but has
not 7Tj,-shadowing property. Let C : R"*! — [0, 1] be the C'*°-function
which generate (K, ¢). If there is a (K, ) flow with do(¢,v) < 6, then
1 has a fixed point in K. If not, then ¢ is conjugate to a singular
suspension of (I, f). Since f has the shadowing property, ¢ has the
shadowing property. But O(e, ¢) is not e-shadowed by any orbit of .
This is a contradiction. By the continuity of C' and C(e) = 0, there is a
closed neighborhood W, of e such that for every u € W,, d(ut,e) < %,
for 0 <t < 1. Assume that W, = {(,1),0 <z < 3, (8 # O),%—r <t<
3+, #0} Let ' : R — [0, 1] be a C*°-function such that

(i) C'(z) =0if z € W,

(i) C'(x) = O(x) if z ¢ W,

(iii) and W, — $W, linear extension from C’(z) to C(z).
Let ¢ be a vector field generated by C’, then dy(v, ) < 6. This means
that every orbits of ¢ is a (4, 1)-pseudo solution of ¢. Let y = maz{z €
I|(z,t) € W} . Then z = (y,t) € 3We, 2/ = (y,8) € W — 3We,where
s < t. We can easily show that O(1, z) is not e-shadowed by any orbit
of ¢. This shows that (K, ) does not have the 7j-inverse shadowing

property.

4. Continuous shadowing and inverse shadowing

THEOREM 4.1. If a flow F' has the T,-continuous shadowing property
on a compact manifold M then it has the 7, -inverse shadowing property,
where o = a, ¢, h.

Proof. We only prove the theorem in the case of a = ¢. Let € > 0,
7 > 0 be given. Take § > 0 by the 7,-continuous shadowing property
corresponding to €. Let ® : M x R — M be an arbitrary continuous
(6, 7)-method of F. Let

Po = | J{®s: 2 € M} CPu(6,7,F) C M®.

Since F' has the 7 .-continuous shadowing property, there is a continuous
map v : P.(d,7,F) — M such that for every ®, € P.(6, 7, F), there
exists a homeomorphism h € Rep* with h(0) = 0 satisfying

A (@)h(), Ba(t)) < &
for all t € R. Let 7/ = 7|p,. By definition of a continuous method, the

map s = & : M — Py C M® by s(x) = ®&(x) = &, is continuous. Let
H =+~"os: M — M. Then H is a continuous map and do(H, idy;) < €.
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If ¢ is sufficiently small, H is surjective. For every x € M, there are
y € M and homeomorphism h € Rep* with h(0) = 0 such that H(y) =«
and

d(y(Py)h(t), By(t)) < e
for all t € R. Then

d(@h(t), ®y(t)) = d(H(y)h(t), ®y(t)) = d(v" o s(y)h(t), By(t))
= d(¥(y)h(t), Py(t)) = d(y(Py)h(t), Dy(t)) <e
for all ¢ € R. This completes the proof. ]

DEFINITION 4.2. We say that a flow F' has the 7,-continuous inverse
shadowing property (o = a,c,h) if for any ¢ > 0 and 7 > 0, there
exists § > 0 such that for each (§,7)-method ® € 7,(0, 7, F) there is a
continuous map s : M — M such that for every point y € M there is
a homeomorphism h € Rep* with h(0) = 0 such that

d(yh(t)v (ps(y) (t)) <e
for all t € R.

THEOREM 4.3. If F' has the T,-continuous inverse shadowing prop-
erty then it has the 7,-shadowing property.

Proof. We only prove the theorem in the case of a = ¢. Let € > 0,
7 > 0 be given. Choose § > 0 by the 7.-continuous inverse shadowing
property corresponding to €. Then there exists a continuous map s :
M — M such that for every y € M there is a homeomorphism h € Rep*
with h(0) = 0 such that

d(yh(t)v <I>s(y) (t)) <e

for all t € R. If t = 0, then d(y, ®,,)(0)) = d(y,s(y)) < e. Since the
map s is continuous, it is surjective for small € > 0. We claim that F has
the 7.-shadowing. Define v : P.(d, 7, F) — M as following; for each
o, € P.(6, 7, F), there are x € M and ® € 7.(6, 7, F) and a continuous
surjective map s : M — M such that ®,(0) = x. Choose y € M with

s(y) = = and define y(®;) = y. Then 7 is a desired map. For every
¢, € P.(0, 7, F) there is a y € M such that v(®;) = y. Then

d('y(q)x)h(t)v CDx(t)) = d(yh(t)a q)s(y) (t)) <é
for all t € R. O

COROLLARY 4.4. If F' is a fixed point free flow with the Ty-continuous
inverse shadowing property then it has the Tp-shadowing property.
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