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GEOMETRIC LORENZ ATTRACTOR AND ORBITAL

SHADOWING PROPERTY

Mohammad Reza Bagherzad Sessary and Keonhee Lee

Abstract. Komuro [3] proved that geometric Lorentz attractor does not
satisfy the shadowing property. In this paper we study the condition un-

der which geometric Lorenz attractor has the orbital shadowing property

that is weaker than the shadowing property.

Geometric Lorenz attractor is a dynamical system constructed by Gucken-
heimer in order to analyse Lorenz system of equations which is related to fluid
conviction. Numerical observation indicates that all solutions of the Lorenz
system pass transversely through a square which will be denoted by Σ, and so
a two-dimensional invertible Poincaré map F can be defined on Σ as in Figure
1 (for more details, see [1]).

Figure 1. Poincaré map
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In [2], Guckenheimer assume that there is a system of coordinate on Σ such
that the Poincaré map F has the following properties:

1. There is a family F of curves in Σ which contains D and has the property
that F is invariant under the map F and the curves in the family F are given
by x = constant, where D is the set with x = 0.

2. There are functions f and g such that F has the form F (x, y) =
(f(x), g(x, y)) for x 6= 0 and F (−x,−y) = −F (x, y).

3. f ′(x) >
√

2 for x 6= 0, and f ′(x)→∞ as x→ 0.

4. 0 < ∂g
∂y < 1 for x 6= 0, and g′y → 0 as x→ 0.

The above assumptions imply

DF (x, y) =

 f ′ 0

∂g
∂x

∂g
∂y

 , f ′x >
√

2 , g′y < 1.

Consequently, F contracts Σ in y-direction and expands Σ in x-direction. Now
one can makes the geometric Lorenz attractor by using suspension flow as in
Figure 2 (for more details see [1, 2]). Komuro [3] proved geometric Lorenz
attractor does not satisfy the shadowing property except the case of f(0) = 1
and f(1) = 1. Roughly speaking, it means that if f(0) 6= 0 or f(1) 6= 1,
there is a pseudo orbit (or chain) in geometric Lorenz attractor which cannot
be shadowed by a real orbit such that the direction of the real orbit and the
pseudo orbit is the same. As we can see in Section 2, the orbital shadowing
property does not require the same direction between the real orbit and the
pseudo orbit, and just require a small Hausdorff distance between their closures.

Figure 2. Suspension flow

On the other hand, Williams [4] described geometric Lorenz attractor as the
inverse limit of a semi-flow on a 2-dimensional branched manifold, and showed
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that the system is conjugate to the system constructed by Guckenheimer in [2].
In this paper we use the system by Williams to prove that geometric Lorenz
attractor does not satisfy the orbital shadowing property. For this we introduce
the notion of geometric Lorenz attractor by Williams.

Let X be a compact metric space with a distance function d. A semi-flow
φ = {φt}t≥0 on X is a continuous map

φ : X × [0,∞)→ X, (x, t) 7−→ φ(x, t) = φt(x) = x · t

such that φ0 is the identity map, φt : X → X is surjective and φt+s = φt ◦ φs
holds for every t, s ≥ 0. We define

X̃ = {x̃ = (xs)s≤0 ∈
∏
s≤0

X : xt = φt−s(xs), s ≤ t ≤ 0},

and

φ̃t(x̃) =

 (φt(xs))s≤0 t ≥ 0,

(xs+t)s≤0 t < 0.

A distance function on X̃ is defined by

d̃(x̃, ỹ) =

∫ ∞
0

e−td(x−t, y−t)dt.

Then (X̃, d̃) is a compact metric space, and {φ̃t}t∈R is a flow on X̃. The flow

(X̃, φ̃) is called the inverse limit of (X,φ). We denote this by

(X̃, φ̃) = lim
←

(X,φ).

For any 0 ≤ α < β ≤ ∞, the set {φ(x, t) | α ≤ t ≤ β} will be denoted by
x·[α, β] if β <∞, and by x·[α,∞) if β =∞. Let K be a 2-dimensional compact
branched manifold illustrated as in Figure 3. We suppose that a C1-semi-flow
φ on K is given as illustrated by arrows in Figure 3. Then (K̃, φ̃) = lim

←
(K,φ)

is called the geometric Lorenz attractor induced by (K,φ).

Remark 1. In Figure 3, we denote I = [b, c], I+a = (a, c], I−a = [b, a) and
Ia = I+a ∪ I−a . Let f : Ia → I be the return map of φ. More precisely, for each
x ∈ Ia, f(x) is defined by f(x) = φT (x), where T =inf{s > 0 : φs(x) ∈ I}. The
point e is a singularity for φ and so the point “a” does not return to I, hence
f is not defined on the point “a”. Moreover, ∪i∈N{f−i(a)} is a dense subset
of [b, c] (for more details, see [3]).

Definition. A (δ, T )-pseudo-orbit (T > 0) of a flow φ on a compact metric
space X is defined as a sequence {(xi, ti) : ti ≥ T, i ∈ Z} ⊂ X × R such that

d(φ(xi, ti), xi+1) < δ

for all i ∈ Z.
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Figure 3. Branched manifold

For all i ∈ Z, put

Si =


∑i−1
j=0 tj i > 0

0 i = 0

−
∑−1
j=i tj i < 0.

For any (δ, T )-pseudo-orbit {(xi, ti)}i∈Z of φ, we let x0 ∗ t = φ(xi, t − Si) for
any t ∈ [Si, Si+1].

Definition. We say that a flow φ on a compact metric space X has the shad-
owing property if for any ε > 0 there exist δ > 0 and T ≥ 1 such that for
any (δ, T )-pseudo-orbit {(xi, ti)}i∈Z of φ, there exist a point x ∈ X and an
increasing homeomorphism h : R→ R with h(0) = 0, such that

d(φ(x, h(t)), x0 ∗ t)) < ε

for all t ∈ R.

Definition. We say that a flow φ on a compact metric space X has the orbital
shadowing property if for any ε > 0, there exist δ > 0 and T ≥ 1 such that for
any (δ, T )-pseudo-orbit {(xi, ti)}i∈Z of φ, there exists a point x ∈ X such that

dH({x0 ∗ t : t ∈ R}, {φ(x, t) : t ∈ R}) < ε,

where dH is the Hausdorff metric on the collection of closed subsets of X. Here
we say that the (δ, T )-pseudo-orbit {(xi, ti)}i∈Z is ε-orbitally shadowed by the
real orbit of O(x, φ).

Note that if a flow φ has the shadowing property, then it has the orbital
shadowing property, but the converse does not hold in general. Now we are
going to investigate the condition under which geometric Lorenz attractor has
the orbital shadowing property. The philosophy of the technique is similar to
that in [3], even though we face with some difficulties in technical details. For
simplicity, we assume a = 1

2 , b = 0 and c = 1. Suppose that f : [0, 1]− { 12} →
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[0, 1] is the return map of the semi-flow φ illustrated in Figure 3. Hereafter we

use (Kf , φf ) instead of (K,φ). So (K̃f , φ̃f ) is the geometric Lorentz attractor
induced by (Kf , φf ). To prove our main result, we need the following lemma.

Lemma 2. If (K̃f , φ̃f ) satisfies the orbital shadowing property, then (Kf , φf )
satisfies the orbital shadowing property.

Proof. Put ε > 0. Let δ > 0 and T > 1 be such that any (δ, T )-pseudo-orbit

of φ̃f can be ε-orbitally shadowed by a real orbit of φ̃f . Let N be such that∫∞
N
e−rdr < δ

2D , where D is the diameter of Kf . Let δ′ > 0 be such that if
x, y ∈ Kf and d(x, y) < δ′, then

d(φf (x, t), φf (y, t)) <
δ

2

for all 0 ≤ t ≤ N . Assume that {(xi, ti)}i∈Z is a (δ′, T )- pseudo orbit of φf .

Since φ(·, t) is surjective for all t ∈ R, for any i ∈ Z, there is ỹi ∈ K̃f such that
ỹ−ti = φ(xi, N − t) for 0 ≤ t ≤ N . So we get

d̃(φ̃f (ỹi, ti), ỹi+1)

=

∫ ∞
0

e−rd((φ̃f (ỹi, ti))
−r, ỹ−ri+1)dr

≤
∫ N

0

e−rd(φf ((ỹ−ri ), ti), ỹ
−r
i+1)dr +

∫ ∞
N

e−rD

=

∫ N

0

e−rd(φf (xi, N − r + ti), φf (xi+1, N − r)dr +

∫ ∞
N

e−rD

≤ δ

2

∫ N

0

e−r +
δ

2
≤ δ.

So ξ̃ = {(ỹi, ti)}i∈Z is a δ-pseudo orbit of φf . Since Kf is compact, there is
ε′ > 0 such that d(x, y) < ε′ implies d(φ(x, t), φ(y, t)) ≤ ε

2e for all t ∈ [0, N ].

Because (K̃f , φ̃f ) satisfies the orbital shadowing property, there is ỹ ∈ K̃f such

that dH(orbit(ỹ), ξ̃) < ε′. So if s, t ∈ R, we get

d̃(φ̃f (ỹ, s), ỹ0 ∗ t) = d̃(φ̃f (ỹ, s), φ̃f (ỹi, t− si))

=

∫ ∞
0

e−rd((φ̃f (ỹ, s))−r, (φ̃f (ỹi, t− si))−r)dr

≥
∫ 1

0

e−rd(φf (ỹ−r, s), φf (ỹ−ri , t− si))dr

≥
∫ 1

0

e−rd(φf (ỹ−N , N − r + s), φf (xi, N − r + t+ si))dr

≥ e−1d(φf (ỹ−N , s+N − r0), φ(xi, t− si +N − r0))
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for some r0 ∈ [0, 1]. Hence we obtain

d(φf (ỹ−N , s+N − r0), φf (xi, t− si +N − r0)) < eε′,

and so d(ỹ−N · (s + N), xi · (t − si + N)) < ε. Consequently, for any s ∈ R,
( t ∈ R) there is t ∈ R ( s ∈ R) such that

d(ỹ · (s+N), y0 ∗ (t+N)) < ε.

This implies dH(o(ỹN ), ξ) < ε, and so completes the proof. �

Theorem 3. Geometric Lorenz attractor satisfies the orbital shadowing prop-
erty if and only if f(0) = 0 and f(1) = 1.

Proof. By applying the result of Theorem 1 in [3] and Lemma 2, it is enough
to show that if f(0) 6= 0 or f(1) 6= 1, then (Kf , φf ) does not satisfy the orbital
shadowing property.

Case 1. f(0) 6= 0 and f(1) 6= 1: Suppose b ∈ ∪i∈Nf−i({a}) and c ∈
∪i∈Nf−i({a}). We show that (Kf , φf ) does not satisfy the orbital shadowing
property. Take r > 0 such that φf (c, r) = a, and let Arc(e, b) be the unique
arc connecting e and b in Kf as in Figure 4. Let

ε′ = dH(Arc(e, b), c · [0, r]).

Choose s > 0 and ε < ε′

12 such that if d(x, y) < ε, then

d(φf (x, s), φf (y, s)) <
ε′

6
and d(φf (b, s), e) <

ε′

6
.

We show that for every δ > 0 and T ≥ 1 there is a (δ, T )-pseudo-orbit of φf
which can not be ε-orbitally shadowed by a real orbit of φf .

Let x0 = b and t0 > T be such that d(φf (x0, t0), e) < δ
2 . Take x1 ∈ Arc(e, c)

with d(x1, e) <
δ
2 . Then there exists t1 > T such that

d(φf (x1, t1), c) <
δ

2
.

Put x2 = c. Since c ∈ ∪i∈Nf−i({a}), there is t2 > T such that

d(φf (x2, t2), e) <
δ

2
.

Then ξ = {φf (xi, t) | t ∈ (0 ti); i = 0, 1, 2} is a (δ, T )-pseudo-orbit of φf ,

and so there is y ∈ K such that dH(y · R, ξ) < ε. This implies that there is
t′ > 0 such that d(φf (y, t′), b) < ε, and φf (y, t′) is in the right side of b. Hence

d(φf (y, t′+s), φ(b, s)) < ε′

6 , and φf (y, t′+s) is in the right side of the line(a, e)

(see Figure 4). Since d(φf (b, s), e) < ε′

6 , we have

d(φf (y, t′ + s), e) <
ε′

3
.

Let r1 > 0 and r2 > 0 be such that

d(φf (y, t′ + s+ r1), e) =
ε′

3
and d(φf (y, t′ + s+ r2), e) =

2ε′

3
.
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Figure 4. Two circles P and Q of radiuses ε′

3 and 2ε′

3

Take r3 > 0 such that

d(φf (y, t′ + s+ r3), φf (y, t′ + s+ r1)) >
ε′

6
and

d(φf (y, t′ + s+ r3), φf (y, t′ + s+ r2) <
ε′

6
.

Notice that ri (i = 1, 2, 3) exists because of the direction of flow (see Figure 4).

Since d(φf (y, t′ + s+ r1), e) = ε′

3 and ε′ = dH(Arc(e, b), c · [0, r]), we have

d(φf (y, t′ + s+ r3), c · [0, r]) > d(φf (y, t′ + s+ r2), c · [0, r])
− d(φf (y, t′ + s+ r3), φf (y, t′ + s+ r2)) > ε.

Since (φf (y, t′ + s+ r3), φf (y, t′ + s+ r1)) > ε′

6 , we have

d(φf (y, t′ + s+ r3), a · [0 ∞)) > (φf (y, t′ + s+ r3), φf (y, t′ + s+ r1)) > ε.

Consequently we have dH({φf (y, t′ + s + r3)}, ξ) > ε. This is a contradiction

because {φf (y, (t′ + s + r3))} ⊂ y · R. If b 6∈ ∪i∈Nf−i({a}), take t0 such that
φf (x0, t0) ∈ [b a], and choose x1 ∈ [b a] ∩ ∪i∈Nf−i({a}) which is close enough
to φf (x0, t0) and x1 is in the left side of φf (x0, t0). Then we can drive a
contradiction as we did in the above.

Similarly if c 6∈ ∪i∈Nf−i({a}), take t2 > T such that φf (x2, t2) ∈ [a, c], and
choose x3 ∈ ∪i∈Nf−i({a}) in the right side and close enough to φf (x2, t2) ∈
[a, c]. Then we can drive a contradiction as we did in the above (see Figure
4).

Case 2. f(1) = 1: Put x2 = c. Then we do not need to find t2 and x3
because {x0, x1, x2} gives us a (δ, T )- pseudo-orbit of φf for every δ > 0 and
T > 1. This completes the proof of Case 2.
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Case 3. f(0) = 0: By assumption we have f(1) 6= 1. Put x0 = c. Then the
proof of Case 3 is similar to that of Case 2. �
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