• Title/Summary/Keyword: Sensor Transducer

Search Result 296, Processing Time 0.024 seconds

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

Design and Acoustic Properties of Acoustic Device with Metal-Piezoceramic Circular Plate (금속-압전세라믹스로 구성된 음향소자의 설계 및 음향특성)

  • Go Young-Jun;Lee Sang-Wook;Nam Hyo-Duk;Chang Ho-Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.275-278
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was designed. The dielectric and piezoelectric properties of $0.5wt\%$ $MnO_2$ and NiO doped 0.1Pb($Mg_{1/3}$$Nb_{2/3}$)$O_3$-$0.45PbTiO_3$-$0.45PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. The acoustic characteristics which is radiated from the acoustic transducer within the finite space was simulated using the finite element method. It has been observed that the characteristics of the sound pressure ard impedance response calculated for the various models of the size and geometry of acoustic transducer.

  • PDF

An Underwater Acoustic Transducer Responding to Frequency Shift by Doppler Effect (도플러효과에 의한 주파수 변화에 대응하는 수중 초음파변환자의 제안)

  • Kim, Jung-Whan;Kim, Moo-Joon;Ha, Kang-Lyeol
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 1999
  • When a moving piezoelectric transducer detects an object in water, its receiving sensitivity is attenuated by Doppler effect. In this paper, a method for compensating the effect is suggested by using a newly designed condenser of which capacitance is varied according to the moving speed of the transducer. Using the method, the receiving resonant frequency of the transducer can be changed automatically. As a result, there is good agreement between the results of experiment and those of calculation. It is confirmed that the response sensitivity degradation of transducers due to Doppler effect can be compensated in the range of $1{\sim}10^m/_s$ moving speed.

  • PDF

Optimal Design of a MEMS-type Piezoelectric Microphone (MEMS 구조 압전 마이크로폰의 최적구조 설계)

  • Kwon, Min-Hyeong;Ra, Yong-Ho;Jeon, Dae-Woo;Lee, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • High-sensitivity signal-to-noise ratio (SNR) microphones are essentially required for a broad range of automatic speech recognition applications. Piezoelectric microphones have several advantages compared to conventional capacitor microphones including high stiffness and high SNR. In this study, we designed a new piezoelectric membrane structure by using the finite elements method (FEM) and an optimization technique to improve the sensitivity of the transducer, which has a high-quality AlN piezoelectric thin film. The simulation demonstrated that the sensitivity critically depends on the inner radius of the top electrode, the outer radius of the membrane, and the thickness of the piezoelectric film in the microphone. The optimized piezoelectric transducer structure showed a much higher sensitivity than that of the conventional piezoelectric transducer structure. This study provides a visible path to realize micro-scale high-sensitivity piezoelectric microphones that have a simple manufacturing process, wide range of frequency and low DC bias voltage.

Miniaturization of disposable functional flow tube (기능성 일회용 호흡관의 소형화 연구)

  • Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.250-257
    • /
    • 2005
  • Respiratory tubes with the length of 35 mm and the diameter of 10, 15, and 20 mm were made and both the static($P_{S}$) and dynamic($P_{D}$) pressures were measured for steady flow rates ranging 1-12 l/sec. Regression analysis resulted successful fitting of $P_{S}$ and $P_{D}$ data with quadratic equations with correlation coefficients higher than 0.99. The measurement standards of the American Thoracic Society (ATS) were applied to $P_{S}$ data, which demonstrated the smallest tube diameter of 15 mm to satisfy the ATS standards. The maximum $P_{D}$ value of the velocity type transducer with the diameter of 15 mm was estimated to be 75 cm$H_{2}O$, implying approximately 7 times larger sensitivity than the widely used pneumotachometer. These results showed that the velocity type respiratory air flow transducer is a unique device accomplishing miniaturization with the sensitivity increased, thus would be of great advantage to develop portable devices.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Development of a Piezoelectric Micro-machined Ultrasonic Transducer for Photoacoustic Imaging that Accounts for the Added Mass Effect of the Acoustic Medium (음향 매질의 추가질량 효과를 고려한 광음향 영상용 초소형 압전 기반 초음파 트랜스듀서의 개발)

  • Ahn, Hongmin;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Typically, photoacoustic images are obtained in water or gelatin because the impedance of these mediums is similar to that of the human body. However, these acoustic mediums can have an additional mass effect that changes the resonance frequency of the transducer. The acoustic radiation impedance in air is negligible because it is very small compared to that of the transducer. However, the high acoustic impedance of mediums such as the human body and water is quite large compared to that of air, making it difficult to ignore. Specifically, in a case where the equivalent mass is very small, such as with a micro-machined ultrasound transducer, the additional mass effects of the acoustic medium should be considered for an accurate resonance frequency design. In this study, a piezoelectric micro-machined ultrasonic transducer (pMUT) was designed to have a resonance frequency of 10 MHz in the acoustic medium of water, which has similar impedance as the human body. At that time, the resonance frequency of the pMUT in air was calculated at 15.2 MHz. When measuring the center displacement of the manufactured pMUT using a laser vibrometer, the resonance frequencies were measured as 14.3-15.1 MHz, which is consistent with the finite element method (FEM) simulation results. Finally, photoacoustic images of human hair samples were successfully obtained using the fabricated pMUT.

A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia (전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구)

  • Park, Mun-Kyu;Noh, Si-Cheol;Park, Jae-Hyun;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

Design and output control technique of sonar transmitter considering impedance variation of underwater acoustic transducer (수중 음향 트랜스듀서의 임피던스 변화를 고려한 소나 송신기의 설계 및 출력 제어 기법)

  • Shin, Chang-Hyun;Lee, Yoon-Ho;Ahn, Byoung-Sun;Yoon, Hong-Woo;Kwon, Byung-Jin;Kim, Kyung-Seop;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.481-491
    • /
    • 2022
  • The active sonar transmission system consists of a transmitter that outputs an electrical signal and an underwater acoustic transducer that converts the amplified electrical signal into an acoustic signal. In general, the transmitter output characteristics are dependent on load impedance, and an underwater acoustic transducer, which is a transmitter load, has a characteristic that the electrical impedance varies largely according to frequency when driven. In such a variable impedance condition, the output of the active sonar transmission system may become unstable. Hence, this paper proposes a design and control technique of a sonar transmitter for transmitting a stable transmission signal even under variable impedance conditions of an underwater acoustic transducer in an active sonar transmission system. The electrical impedance characteristics of the underwater acoustic transducer are experimentally analyzed, and the sonar transmitter is composed of a single-phase full-bridge inverter, an LC filter, and a matching circuit. In this paper, the design and output control method of the sonar transmitter is proposed to protect the transmitter and transducer. It can secure stable output voltage characteristics even if it transmits the Linear Frequency Modulation (LFM) signal. The validity is verified through the simulation and the experiment.