DOI QR코드

DOI QR Code

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei (Research Center of Sensor Technology, Beijing Information Science & Technology University) ;
  • Wang, Jianjun (Department of Applied Mechanics, University of Science and Technology Beijing) ;
  • Liu, Donghuan (Department of Applied Mechanics, University of Science and Technology Beijing) ;
  • Tang, Lihua (Department of Mechanical Engineering, University of Auckland) ;
  • Song, Gangbing (Department of Mechanical Engineering, University of Houston)
  • Received : 2019.03.11
  • Accepted : 2019.04.25
  • Published : 2019.10.25

Abstract

The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities

References

  1. Agrawal, B.N., Elshafei, M.A. and Song, G. (1997), "Adaptive antenna shape control using piezoelectric actuators", Acta Astronautica, 40(11), 821-826. https://doi.org/10.1016/S0094-5765(97)00185-9.
  2. Alkoy, S., Hladky, A.C., Dogan, A., Cochran Jr, J.K. and Newnham, R.E. (1999), "Piezoelectric hollow spheres for microprobe hydrophones", Ferroelectrics, 226(1), 11-25. https://doi.org/10.1080/00150199908230286.
  3. Alkoy, S., Meyer Jr, R.J., Hughes, W.J., Cochran Jr, J.K. and Newnham, R.E. (2009), "Design, performance and modeling of piezoceramic hollow-sphere microprobe hydrophones", Meas. Sci. Technol., 20(9), 095204. https://doi.org/10.1088/0957-0233/20/9/095204
  4. Alkoy, S., Dogan, A., Hladky, A.C., Langlet, P., Cochran, J.K. and Newnham, R.E. (1997), "Miniature piezoelectric hollow sphere transducers (BBs)", IEEE T. Ultrason. Ferr., 44(5), 1067-1076. DOI: 10.1109/58.655632.
  5. Arnold, F.J. and Muhlen, S.S. (2001), "The mechanical prestressing in ultrasonic piezotransducers", Ultrasonics, 39(1), 7-11. https://doi.org/10.1016/S0041-624X(00)00048-2.
  6. Arnold, F.J., Bravo-Roger, L.L., Goncalves, M.S. and Grilo, M. (2012), "Characterization of sandwiched piezoelectric transducers-a complement for teaching electric circuits", Lat. Am. J. Phys. Educ., 6(2), 216-220.
  7. Aronov, B.S. (2009), "Coupled vibration analysis of the thinwalled cylindrical piezoelectric ceramic transducers", J. Acoust. Soc. Am., 125(2), 803-818. https://doi.org/10.1121/1.3056560.
  8. Chen, W.Q. (2000), "Vibration theory of non-homogeneous, spherically isotropic piezoelastic bodies", J. Sound Vib., 236(5), 833-860. https://doi.org/10.1006/jsvi.2000.3022.
  9. Chen, W.Q. (2001), "Free vibration analysis of laminated piezoceramic hollow spheres", J. Acoust. Soc. Am., 109(1), 41-50. https://doi.org/10.1121/1.1331110.
  10. Drenkow, P.W. and Long, C.F. (1967), "Radial vibration of a thickshell hollow piezoceramic sphere", Acta Mech., 3(1), 13-21. https://doi.org/10.1007/BF01193597.
  11. Dumoulin, C. and Deraemaeker, A. (2017), "Real-time fast ultrasonic monitoring of concrete cracking using embedded piezoelectric transducers", Smart Mater. Struct., 26(10), 104006. https://doi.org/10.1088/1361-665X/aa765e
  12. Du, G., Kong, Q., Wu, F., Ruan, J. and Song, G. (2016), "An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror", Smart Mater. Struct., 25(3), 037002. https://doi.org/10.1088/0964-1726/25/3/037002
  13. Du, G., Zhang, J., Zhang, J. and Song, G. (2017), "Experimental study on stress monitoring of sand-filled steel tube during impact using piezoceramic smart aggregates", Sensors, 17(8), 1930. https://doi.org/10.3390/s17081930.
  14. Ebenezer, D.D. (2004), "Determination of complex coefficients of radially polarized piezoelectric ceramic cylindrical shells using thin shell theory", IEEE T. Ultrason. Ferr., 51(10), 1209-1215. DOI: 10.1109/TUFFC.2004.1350947.
  15. Feeney, A. and Lucas, M. (2014), "Smart cymbal transducers with nitinol end caps tunable to multiple operating frequencies", IEEE T. Ultrason. Ferr., 61(10), 1709-1719. DOI: 10.1109/TUFFC.2013.006231.
  16. Feeney, A. and Lucas, M. (2016), "Differential scanning calorimetry of superelastic Nitinol for tunable cymbal transducers", J. Intel. Mat. Syst. Str., 27(10), 1376-1387. https://doi.org/10.1177/1045389X15591383.
  17. Feeney, A. and Lucas, M. (2018), "A comparison of two configurations for a dual-resonance cymbal transducer", IEEE T. Ultrason. Ferr., 65(3), 489-496. DOI: 10.1109/TUFFC.2018.2793310.
  18. Feng, Q., Cui, J., Wang, Q., Fan, S. and Kong, Q. (2018), "A feasibility study on real-time evaluation of concrete surface crack repairing using embedded piezoceramic transducers", Measurement, 122, 591-596. https://doi.org/10.1016/j.measurement.2017.09.015.
  19. Gao, W., Huo, L., Li, H. and Song, G. (2018a), "An embedded tubular PZT transducer based damage imaging method for twodimensional concrete structures", IEEE Access, 6, 30100-30109. DOI: 10.1109/ACCESS.2018.2843788.
  20. Gao, W., Huo, L., Li, H. and Song, G. (2018b), "Smart concrete slabs with embedded tubular PZT transducers for damage detection", Smart Mater. Struct., 27(2), 025002. https://doi.org/10.1088/1361-665X/aa9c72
  21. George, J., Ebenezer, D.D. and Bhattacharyya, S.K. (2010), "Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating", J. Acoust. Soc. Am., 128(4), 1712-1720. https://doi.org/10.1121/1.3478776.
  22. Hasheminejad, S.M. and Gudarzi, M. (2015), "Active sound radiation control of a submerged piezocomposite hollow sphere", J. Intel. Mat. Syst. Str., 26(15), 2073-2091. https://doi.org/10.1177/1045389X14549863.
  23. Heyliger, P.R. and Wu, Y.C. (1999), "Electroelastic fields in layered piezoelectric spheres", Int. J. Eng. Sci., 37(2), 143-161. https://doi.org/10.1016/S0020-7225(98)00068-8.
  24. Hou, S., Kong, Z., Wu, B. and Liu, L. (2018), "Compactness monitoring of compound concrete filled with demolished concrete lumps using PZT-based smart aggregates", J. Aerosp. Eng., 31(5), 04018064. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000903.
  25. Hussein, M. and Heyliger, P. (1998), "Three-dimensional vibrations of layered piezoelectric cylinders", J. Eng. Mech., 124(11), 1294-1298. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:11(1294).
  26. Kim, J.O. and Lee, J.G. (2007), "Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization", J. Sound Vib., 300(1-2), 241-249. https://doi.org/10.1016/j.jsv.2006.08.021.
  27. Kim, J.O., Hwang, K.K. and Jeong, H.G. (2004), "Radial vibration characteristics of piezoelectric cylindrical transducers", J. Sound Vib., 276(3-5), 1135-1144. https://doi.org/10.1016/j.jsv.2003.11.015
  28. Kim, J.O., Lee, J.G. and Chun, H.Y. (2005), "Radial vibration characteristics of spherical piezoelectric transducers", Ultrasonics, 43(7), 531-537. https://doi.org/10.1016/j.ultras.2005.01.004.
  29. Kong, Q., Fan, S., Mo, Y.L. and Song, G. (2017a), "A novel embeddable spherical smart aggregate for structural health monitoring: Part II. numerical and experimental verifications", Smart Mater. Struct., 26(9), 095051. https://doi.org/10.1088/1361-665X/aa80ef
  30. Kong, Q., Fan, S., Bai, X., Mo, Y.L. and Song, G. (2017b), "A novel embeddable spherical smart aggregate for structural health monitoring: Part I. fabrication and electrical characterization", Smart Mater. Struct., 26(9), 095050. https://doi.org/10.1088/1361-665X/aa80bc
  31. Lewin, P.A. and Chivers, R.C. (1981), "Two miniature ceramic ultrasonic probes", J. Phys. E: Sci. Instrum., 14(12), 1420. https://doi.org/10.1088/0022-3735/14/12/017
  32. Li, H., Liu, Z. and Lin, Q. (2001), "Spherical-symmetric steadystate response of fluid-filled laminate piezoelectric spherical shell under external excitation", Acta Mech., 150(1), 53-66. https://doi.org/10.1007/BF01178544.
  33. Li, W., Liu, T., Wang, J., Zou, D. and Gao, S. (2019), "Finiteelement analysis of an electromechanical impedance-based corrosion sensor with experimental verification", J. Aerosp. Eng., 32(3), 04019012. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001002.
  34. Lin, J., Lin, S. and Xu, J. (2019), "Analysis and experimental validation of longitudinally composite ultrasonic transducers", J. Acoust. Soc. Am., 145(1), 263-271. https://doi.org/10.1121/1.5087554.
  35. Lin, S. (2004), "Effect of electric load impedances on the performance of sandwich piezoelectric transducers", IEEE T. Ultrason. Ferr., 51(10), 1280-1286. DOI: 10.1109/TUFFC.2004.1350956.
  36. Lin, S. (2007), "Radial vibration of the composite ultrasonic transducer of piezoelectric and metal rings", IEEE T. Ultrason. Ferr., 54(6), 1276-1280. DOI: 10.1109/TUFFC.2007.381.
  37. Lin, S. (2017), "Study on the parallel electric matching of high power piezoelectric transducers", Acta Acust. United Ac., 103(3), 385-391. https://doi.org/10.3813/AAA.919068.
  38. Lin, S. and Xu, C. (2008), "Analysis of the sandwich ultrasonic transducer with two sets of piezoelectric elements", Smart Mater. Struct., 17(6), 065008. https://doi.org/10.1088/0964-1726/17/6/065008
  39. Lin, S. and Wang, S.J. (2011), "Radially composite piezoelectric ceramic tubular transducer in radial vibration", IEEE T. Ultrason. Ferr., 58(11), 2492-2498. DOI: 10.1109/TUFFC.2011.2106.
  40. Lin, S. and Xu, J. (2017), "Effect of the matching circuit on the electromechanical characteristics of sandwiched piezoelectric transducers", Sensors, 17(2), 329. https://doi.org/10.3390/s17020329.
  41. Lin, S. and Xu, J. (2018), "Analysis on the cascade high power piezoelectric ultrasonic transducers", Smart Struct. Syst., 21(2), 151-161. https://doi.org/10.12989/sss.2018.21.2.151.
  42. Lin, S., Guo, H. and Xu, J. (2018), "Actively adjustable step-type ultrasonic horns in longitudinal vibration", J. Sound Vib., 419, 367-379. https://doi.org/10.1016/j.jsv.2018.01.033.
  43. Lin, S., Fu, Z.Q., Zhang, X.L., Wang, Y. and Hu, J. (2013), "Radially sandwiched cylindrical piezoelectric transducer", Smart Mater. Struct., 22(1), 015005. https://doi.org/10.1088/0964-1726/22/1/015005
  44. Liu, T., Zou, D., Du, C. and Wang, Y. (2017), "Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers", Struct. Health Monit., 16(2), 202-214. https://doi.org/10.1177/1475921716670573.
  45. Liu, T., Huang, Y., Zou, D., Teng, J. and Li, B. (2013), "Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates", Smart Mater. Struct., 22(6), 065002. https://doi.org/10.1088/0964-1726/22/6/065002
  46. Luo, M., Li, W., Hei, C. and Song, G., (2016), "Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method", Sensors, 16(12), 2083. https://doi.org/10.3390/s16122083.
  47. Loza, I.A. and Shul'Ga, N.A. (1984), "Axisymmetric vibrations of a hollow piezoceramic sphere with radial polarization", Int. Appl. Mech., 20(2), 113-117. https://doi.org/10.1007/BF00883933.
  48. Mason, W.P. (1950), Piezoelectric crystals and their application to ultrasonics, Van Nostrand Reinhold, New York.
  49. Meyer, J.L., Harrington, W.B., Agrawal, B.N. and Song, G., (1998), "Vibration suppression of a spacecraft flexible appendage using smart material", Smart Mater. Struct., 7(1), 95. https://doi.org/10.1088/0964-1726/7/1/011
  50. Meyer, R., Newnham, R., Alkoy, S., Ritter, T. and Cochran, J. (2001), "Pre-focused lead titanate> 25 MHz single-element transducers from hollow spheres", IEEE T. Ultrason. Ferr., 48(2), 488-493. DOI: 10.1109/58.911731.
  51. Qin, L. (2010), Research on transducer with broad beamwidth, Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China.
  52. Ramirez, G. and Buchanan, G. (2004), "Free vibrations of homogeneous and layered piezoelectric hollow spheres", Int.J. Struct. Stab. Dy., 4(3), 443-458. https://doi.org/10.1142/S0219455404001318.
  53. Tian, H., Lin, S. and Xu, J. (2018), "Longitudinally composite ultrasonic solid conical horns with adjustable vibrational performance", Acta Acust. United Ac., 104(1), 54-63. https://doi.org/10.3813/AAA.919145.
  54. Wang, H.M. and Luo, D.S. (2016), "Exact analysis of radial vibration of functionally graded piezoelectric ring transducers resting on elastic foundation", Appl. Math. Model., 40(4), 2549-2559. https://doi.org/10.1016/j.apm.2015.09.108.
  55. Wang, J.J. and Shi, Z.F. (2013), "Dynamic characteristics of an axially polarized multilayer piezoelectric/elastic composite cylindrical transducer", IEEE T. Ultrason. Ferr., 60(10), 2196-2203. DOI: 10.1109/TUFFC.2013.2810.
  56. Wang, J.J., Wei, P. and Ji, J. (2017), "Theoretical analysis of a resistance adjusting type piezoelectric cylindrical transducer", J. Intel. Mat. Syst. Str., 28(20), 2896-2907. https://doi.org/10.1177/1045389X17704068.
  57. Wang, J.J., Kong, Q., Shi, Z.F. and Song, G. (2018a), "A theoretical model for designing the novel embeddable spherical smart aggregate", IEEE Access, 6, 48403-48417. DOI: 10.1109/ACCESS.2018.2851454.
  58. Wang, J.J., Wei, P., Qin, L. and Tang, L. (2018b), "Modeling and analysis of multilayer piezoelectric-elastic spherical transducers", J. Intel. Mat. Syst. Str., 29(11), 2437-2455. https://doi.org/10.1177/1045389X18770868.
  59. Wang, J.J., Qin, L., Song, W.B., Shi, Z.F. and Song, G. (2018c), "Electromechanical characteristics of radially layered piezoceramic/epoxy cylindrical composite transducers: theoretical solution, numerical simulation and experimental verification", IEEE T. Ultrason. Ferr., 65(9), 1643-1656. DOI: 10.1109/TUFFC.2018.2844881.
  60. Wang, L., Qin, L., Li, W., Zhang, B., Lu, Y. and Li, G. (2015), "Analysis on radial vibration of a stack of piezoelectric shells", Ceram. Int., 41(1), S856-S860. https://doi.org/10.1016/j.ceramint.2015.03.159.
  61. Xu, Y., Luo, M., Hei, C. and Song, G., (2018a), "Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival", Smart Mater. Struct., 27(3), 035023. https://doi.org/10.1088/1361-665X/aa9dd0
  62. Xu, K., Deng, Q., Cai, L., Ho, S. and Song, G. (2018b), "Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers", Sensors, 18(5), 1377. https://doi.org/10.3390/s18051377.
  63. Yu, J.G., Lefebvre, J.E. and Guo, Y.Q. (2013), "Wave propagation in multilayered piezoelectric spherical plates", Acta Mech., 224(7), 1335-1349. https://doi.org/10.1007/s00707-013-0811-8.
  64. Zhang, H., Hou, S. and Ou, J. (2018), "Smart aggregates for monitoring stress in structural lightweight concrete", Measurement, 122, 257-263. https://doi.org/10.1016/j.measurement.2018.03.041.
  65. Zhang, T.T. and Shi, Z.F. (2010), "Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties", Smart Struct. Syst., 6(8), 975-989. http://dx.doi.org/10.12989/sss.2010.6.8.975.
  66. Zhang, T.T. and Shi, Z.F. (2011), "Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer", Smart Mater. Struct., 20(8), 085017. https://doi.org/10.1088/0964-1726/20/8/085017
  67. Zhang, T.T., Zhang, K. and Liu, W. (2019), "Exact impact response of multi-layered cement-based piezoelectric composite considering electrode effect", J. Intel. Mat. Syst. Str., 30(3), 400-415. https://doi.org/10.1177/1045389X18812713.
  68. Zhu, J., Ho, S.C.M., Patil, D., Wang, N., Hirsch, R. and Song, G., (2017), "Underwater pipeline impact localization using piezoceramic transducers", Smart Mater. Struct., 26(10), p.107002. https://doi.org/10.1088/1361-665X/aa80c9
  69. Zou, D., Liu, T., Huang, Y., Zhang, F., Du, C. and Li, B. (2014), "Feasibility of water seepage monitoring in concrete with embedded smart aggregates by P-wave travel time measurement", Smart Mater. Struct., 23(6), 067003. https://doi.org/10.1088/0964-1726/23/6/067003
  70. Zou, D., Liu, T., Liang, C., Huang, Y., Zhang, F. and Du, C. (2015), "An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures", J. Intel. Mat. Syst. Str., 26(8), 1028-1034. https://doi.org/10.1177/1045389X14566525.

Cited by

  1. Concrete strength monitoring based on the variation of ultrasonic waveform acquired by piezoelectric aggregates vol.76, pp.5, 2019, https://doi.org/10.12989/sem.2020.76.5.591