Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.4.435

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer  

Qin, Lei (Research Center of Sensor Technology, Beijing Information Science & Technology University)
Wang, Jianjun (Department of Applied Mechanics, University of Science and Technology Beijing)
Liu, Donghuan (Department of Applied Mechanics, University of Science and Technology Beijing)
Tang, Lihua (Department of Mechanical Engineering, University of Auckland)
Song, Gangbing (Department of Mechanical Engineering, University of Houston)
Publication Information
Smart Structures and Systems / v.24, no.4, 2019 , pp. 435-446 More about this Journal
Abstract
The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.
Keywords
piezoelectric spherical transducer; spherical smart aggregate (SSA); piezoelasticity; multi-frequency characteristics; structural health monitoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arnold, F.J., Bravo-Roger, L.L., Goncalves, M.S. and Grilo, M. (2012), "Characterization of sandwiched piezoelectric transducers-a complement for teaching electric circuits", Lat. Am. J. Phys. Educ., 6(2), 216-220.
2 Aronov, B.S. (2009), "Coupled vibration analysis of the thinwalled cylindrical piezoelectric ceramic transducers", J. Acoust. Soc. Am., 125(2), 803-818. https://doi.org/10.1121/1.3056560.   DOI
3 Chen, W.Q. (2000), "Vibration theory of non-homogeneous, spherically isotropic piezoelastic bodies", J. Sound Vib., 236(5), 833-860. https://doi.org/10.1006/jsvi.2000.3022.   DOI
4 Chen, W.Q. (2001), "Free vibration analysis of laminated piezoceramic hollow spheres", J. Acoust. Soc. Am., 109(1), 41-50. https://doi.org/10.1121/1.1331110.   DOI
5 Drenkow, P.W. and Long, C.F. (1967), "Radial vibration of a thickshell hollow piezoceramic sphere", Acta Mech., 3(1), 13-21. https://doi.org/10.1007/BF01193597.   DOI
6 Dumoulin, C. and Deraemaeker, A. (2017), "Real-time fast ultrasonic monitoring of concrete cracking using embedded piezoelectric transducers", Smart Mater. Struct., 26(10), 104006.   DOI
7 Du, G., Kong, Q., Wu, F., Ruan, J. and Song, G. (2016), "An experimental feasibility study of pipeline corrosion pit detection using a piezoceramic time reversal mirror", Smart Mater. Struct., 25(3), 037002.   DOI
8 Lin, S. and Xu, J. (2017), "Effect of the matching circuit on the electromechanical characteristics of sandwiched piezoelectric transducers", Sensors, 17(2), 329. https://doi.org/10.3390/s17020329.   DOI
9 Lin, S. and Xu, J. (2018), "Analysis on the cascade high power piezoelectric ultrasonic transducers", Smart Struct. Syst., 21(2), 151-161. https://doi.org/10.12989/sss.2018.21.2.151.   DOI
10 Lin, S., Guo, H. and Xu, J. (2018), "Actively adjustable step-type ultrasonic horns in longitudinal vibration", J. Sound Vib., 419, 367-379. https://doi.org/10.1016/j.jsv.2018.01.033.   DOI
11 Lin, S., Fu, Z.Q., Zhang, X.L., Wang, Y. and Hu, J. (2013), "Radially sandwiched cylindrical piezoelectric transducer", Smart Mater. Struct., 22(1), 015005.   DOI
12 Liu, T., Zou, D., Du, C. and Wang, Y. (2017), "Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers", Struct. Health Monit., 16(2), 202-214. https://doi.org/10.1177/1475921716670573.   DOI
13 Mason, W.P. (1950), Piezoelectric crystals and their application to ultrasonics, Van Nostrand Reinhold, New York.
14 Du, G., Zhang, J., Zhang, J. and Song, G. (2017), "Experimental study on stress monitoring of sand-filled steel tube during impact using piezoceramic smart aggregates", Sensors, 17(8), 1930. https://doi.org/10.3390/s17081930.   DOI
15 Arnold, F.J. and Muhlen, S.S. (2001), "The mechanical prestressing in ultrasonic piezotransducers", Ultrasonics, 39(1), 7-11. https://doi.org/10.1016/S0041-624X(00)00048-2.   DOI
16 Liu, T., Huang, Y., Zou, D., Teng, J. and Li, B. (2013), "Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates", Smart Mater. Struct., 22(6), 065002.   DOI
17 Luo, M., Li, W., Hei, C. and Song, G., (2016), "Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method", Sensors, 16(12), 2083. https://doi.org/10.3390/s16122083.   DOI
18 Loza, I.A. and Shul'Ga, N.A. (1984), "Axisymmetric vibrations of a hollow piezoceramic sphere with radial polarization", Int. Appl. Mech., 20(2), 113-117. https://doi.org/10.1007/BF00883933.
19 Meyer, J.L., Harrington, W.B., Agrawal, B.N. and Song, G., (1998), "Vibration suppression of a spacecraft flexible appendage using smart material", Smart Mater. Struct., 7(1), 95.   DOI
20 Meyer, R., Newnham, R., Alkoy, S., Ritter, T. and Cochran, J. (2001), "Pre-focused lead titanate> 25 MHz single-element transducers from hollow spheres", IEEE T. Ultrason. Ferr., 48(2), 488-493. DOI: 10.1109/58.911731.   DOI
21 Qin, L. (2010), Research on transducer with broad beamwidth, Ph.D. Thesis, Beijing University of Posts and Telecommunications, Beijing, China.
22 Ramirez, G. and Buchanan, G. (2004), "Free vibrations of homogeneous and layered piezoelectric hollow spheres", Int.J. Struct. Stab. Dy., 4(3), 443-458. https://doi.org/10.1142/S0219455404001318.   DOI
23 Tian, H., Lin, S. and Xu, J. (2018), "Longitudinally composite ultrasonic solid conical horns with adjustable vibrational performance", Acta Acust. United Ac., 104(1), 54-63. https://doi.org/10.3813/AAA.919145.   DOI
24 Feeney, A. and Lucas, M. (2018), "A comparison of two configurations for a dual-resonance cymbal transducer", IEEE T. Ultrason. Ferr., 65(3), 489-496. DOI: 10.1109/TUFFC.2018.2793310.   DOI
25 Ebenezer, D.D. (2004), "Determination of complex coefficients of radially polarized piezoelectric ceramic cylindrical shells using thin shell theory", IEEE T. Ultrason. Ferr., 51(10), 1209-1215. DOI: 10.1109/TUFFC.2004.1350947.   DOI
26 Feeney, A. and Lucas, M. (2014), "Smart cymbal transducers with nitinol end caps tunable to multiple operating frequencies", IEEE T. Ultrason. Ferr., 61(10), 1709-1719. DOI: 10.1109/TUFFC.2013.006231.   DOI
27 Feeney, A. and Lucas, M. (2016), "Differential scanning calorimetry of superelastic Nitinol for tunable cymbal transducers", J. Intel. Mat. Syst. Str., 27(10), 1376-1387. https://doi.org/10.1177/1045389X15591383.   DOI
28 Wang, J.J., Wei, P. and Ji, J. (2017), "Theoretical analysis of a resistance adjusting type piezoelectric cylindrical transducer", J. Intel. Mat. Syst. Str., 28(20), 2896-2907. https://doi.org/10.1177/1045389X17704068.   DOI
29 Wang, H.M. and Luo, D.S. (2016), "Exact analysis of radial vibration of functionally graded piezoelectric ring transducers resting on elastic foundation", Appl. Math. Model., 40(4), 2549-2559. https://doi.org/10.1016/j.apm.2015.09.108.   DOI
30 Wang, J.J. and Shi, Z.F. (2013), "Dynamic characteristics of an axially polarized multilayer piezoelectric/elastic composite cylindrical transducer", IEEE T. Ultrason. Ferr., 60(10), 2196-2203. DOI: 10.1109/TUFFC.2013.2810.   DOI
31 Wang, J.J., Kong, Q., Shi, Z.F. and Song, G. (2018a), "A theoretical model for designing the novel embeddable spherical smart aggregate", IEEE Access, 6, 48403-48417. DOI: 10.1109/ACCESS.2018.2851454.   DOI
32 Wang, J.J., Wei, P., Qin, L. and Tang, L. (2018b), "Modeling and analysis of multilayer piezoelectric-elastic spherical transducers", J. Intel. Mat. Syst. Str., 29(11), 2437-2455. https://doi.org/10.1177/1045389X18770868.   DOI
33 George, J., Ebenezer, D.D. and Bhattacharyya, S.K. (2010), "Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating", J. Acoust. Soc. Am., 128(4), 1712-1720. https://doi.org/10.1121/1.3478776.   DOI
34 Feng, Q., Cui, J., Wang, Q., Fan, S. and Kong, Q. (2018), "A feasibility study on real-time evaluation of concrete surface crack repairing using embedded piezoceramic transducers", Measurement, 122, 591-596. https://doi.org/10.1016/j.measurement.2017.09.015.   DOI
35 Gao, W., Huo, L., Li, H. and Song, G. (2018a), "An embedded tubular PZT transducer based damage imaging method for twodimensional concrete structures", IEEE Access, 6, 30100-30109. DOI: 10.1109/ACCESS.2018.2843788.   DOI
36 Gao, W., Huo, L., Li, H. and Song, G. (2018b), "Smart concrete slabs with embedded tubular PZT transducers for damage detection", Smart Mater. Struct., 27(2), 025002.   DOI
37 Xu, K., Deng, Q., Cai, L., Ho, S. and Song, G. (2018b), "Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers", Sensors, 18(5), 1377. https://doi.org/10.3390/s18051377.   DOI
38 Wang, J.J., Qin, L., Song, W.B., Shi, Z.F. and Song, G. (2018c), "Electromechanical characteristics of radially layered piezoceramic/epoxy cylindrical composite transducers: theoretical solution, numerical simulation and experimental verification", IEEE T. Ultrason. Ferr., 65(9), 1643-1656. DOI: 10.1109/TUFFC.2018.2844881.   DOI
39 Wang, L., Qin, L., Li, W., Zhang, B., Lu, Y. and Li, G. (2015), "Analysis on radial vibration of a stack of piezoelectric shells", Ceram. Int., 41(1), S856-S860. https://doi.org/10.1016/j.ceramint.2015.03.159.   DOI
40 Xu, Y., Luo, M., Hei, C. and Song, G., (2018a), "Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival", Smart Mater. Struct., 27(3), 035023.   DOI
41 Yu, J.G., Lefebvre, J.E. and Guo, Y.Q. (2013), "Wave propagation in multilayered piezoelectric spherical plates", Acta Mech., 224(7), 1335-1349. https://doi.org/10.1007/s00707-013-0811-8.   DOI
42 Zhang, H., Hou, S. and Ou, J. (2018), "Smart aggregates for monitoring stress in structural lightweight concrete", Measurement, 122, 257-263. https://doi.org/10.1016/j.measurement.2018.03.041.   DOI
43 Zhang, T.T. and Shi, Z.F. (2010), "Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties", Smart Struct. Syst., 6(8), 975-989. http://dx.doi.org/10.12989/sss.2010.6.8.975.   DOI
44 Zhang, T.T. and Shi, Z.F. (2011), "Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer", Smart Mater. Struct., 20(8), 085017.   DOI
45 Hussein, M. and Heyliger, P. (1998), "Three-dimensional vibrations of layered piezoelectric cylinders", J. Eng. Mech., 124(11), 1294-1298. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:11(1294).   DOI
46 Hasheminejad, S.M. and Gudarzi, M. (2015), "Active sound radiation control of a submerged piezocomposite hollow sphere", J. Intel. Mat. Syst. Str., 26(15), 2073-2091. https://doi.org/10.1177/1045389X14549863.   DOI
47 Heyliger, P.R. and Wu, Y.C. (1999), "Electroelastic fields in layered piezoelectric spheres", Int. J. Eng. Sci., 37(2), 143-161. https://doi.org/10.1016/S0020-7225(98)00068-8.   DOI
48 Zhang, T.T., Zhang, K. and Liu, W. (2019), "Exact impact response of multi-layered cement-based piezoelectric composite considering electrode effect", J. Intel. Mat. Syst. Str., 30(3), 400-415. https://doi.org/10.1177/1045389X18812713.   DOI
49 Zhu, J., Ho, S.C.M., Patil, D., Wang, N., Hirsch, R. and Song, G., (2017), "Underwater pipeline impact localization using piezoceramic transducers", Smart Mater. Struct., 26(10), p.107002.   DOI
50 Hou, S., Kong, Z., Wu, B. and Liu, L. (2018), "Compactness monitoring of compound concrete filled with demolished concrete lumps using PZT-based smart aggregates", J. Aerosp. Eng., 31(5), 04018064. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000903.   DOI
51 Kim, J.O. and Lee, J.G. (2007), "Dynamic characteristics of piezoelectric cylindrical transducers with radial polarization", J. Sound Vib., 300(1-2), 241-249. https://doi.org/10.1016/j.jsv.2006.08.021.   DOI
52 Kim, J.O., Hwang, K.K. and Jeong, H.G. (2004), "Radial vibration characteristics of piezoelectric cylindrical transducers", J. Sound Vib., 276(3-5), 1135-1144.   DOI
53 Kim, J.O., Lee, J.G. and Chun, H.Y. (2005), "Radial vibration characteristics of spherical piezoelectric transducers", Ultrasonics, 43(7), 531-537. https://doi.org/10.1016/j.ultras.2005.01.004.   DOI
54 Kong, Q., Fan, S., Mo, Y.L. and Song, G. (2017a), "A novel embeddable spherical smart aggregate for structural health monitoring: Part II. numerical and experimental verifications", Smart Mater. Struct., 26(9), 095051.   DOI
55 Kong, Q., Fan, S., Bai, X., Mo, Y.L. and Song, G. (2017b), "A novel embeddable spherical smart aggregate for structural health monitoring: Part I. fabrication and electrical characterization", Smart Mater. Struct., 26(9), 095050.   DOI
56 Alkoy, S., Meyer Jr, R.J., Hughes, W.J., Cochran Jr, J.K. and Newnham, R.E. (2009), "Design, performance and modeling of piezoceramic hollow-sphere microprobe hydrophones", Meas. Sci. Technol., 20(9), 095204.   DOI
57 Zou, D., Liu, T., Huang, Y., Zhang, F., Du, C. and Li, B. (2014), "Feasibility of water seepage monitoring in concrete with embedded smart aggregates by P-wave travel time measurement", Smart Mater. Struct., 23(6), 067003.   DOI
58 Zou, D., Liu, T., Liang, C., Huang, Y., Zhang, F. and Du, C. (2015), "An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures", J. Intel. Mat. Syst. Str., 26(8), 1028-1034. https://doi.org/10.1177/1045389X14566525.   DOI
59 Agrawal, B.N., Elshafei, M.A. and Song, G. (1997), "Adaptive antenna shape control using piezoelectric actuators", Acta Astronautica, 40(11), 821-826. https://doi.org/10.1016/S0094-5765(97)00185-9.   DOI
60 Alkoy, S., Hladky, A.C., Dogan, A., Cochran Jr, J.K. and Newnham, R.E. (1999), "Piezoelectric hollow spheres for microprobe hydrophones", Ferroelectrics, 226(1), 11-25. https://doi.org/10.1080/00150199908230286.   DOI
61 Alkoy, S., Dogan, A., Hladky, A.C., Langlet, P., Cochran, J.K. and Newnham, R.E. (1997), "Miniature piezoelectric hollow sphere transducers (BBs)", IEEE T. Ultrason. Ferr., 44(5), 1067-1076. DOI: 10.1109/58.655632.   DOI
62 Lin, J., Lin, S. and Xu, J. (2019), "Analysis and experimental validation of longitudinally composite ultrasonic transducers", J. Acoust. Soc. Am., 145(1), 263-271. https://doi.org/10.1121/1.5087554.   DOI
63 Lewin, P.A. and Chivers, R.C. (1981), "Two miniature ceramic ultrasonic probes", J. Phys. E: Sci. Instrum., 14(12), 1420.   DOI
64 Li, H., Liu, Z. and Lin, Q. (2001), "Spherical-symmetric steadystate response of fluid-filled laminate piezoelectric spherical shell under external excitation", Acta Mech., 150(1), 53-66. https://doi.org/10.1007/BF01178544.   DOI
65 Li, W., Liu, T., Wang, J., Zou, D. and Gao, S. (2019), "Finiteelement analysis of an electromechanical impedance-based corrosion sensor with experimental verification", J. Aerosp. Eng., 32(3), 04019012. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001002.   DOI
66 Lin, S. (2004), "Effect of electric load impedances on the performance of sandwich piezoelectric transducers", IEEE T. Ultrason. Ferr., 51(10), 1280-1286. DOI: 10.1109/TUFFC.2004.1350956.   DOI
67 Lin, S. (2007), "Radial vibration of the composite ultrasonic transducer of piezoelectric and metal rings", IEEE T. Ultrason. Ferr., 54(6), 1276-1280. DOI: 10.1109/TUFFC.2007.381.   DOI
68 Lin, S. (2017), "Study on the parallel electric matching of high power piezoelectric transducers", Acta Acust. United Ac., 103(3), 385-391. https://doi.org/10.3813/AAA.919068.   DOI
69 Lin, S. and Xu, C. (2008), "Analysis of the sandwich ultrasonic transducer with two sets of piezoelectric elements", Smart Mater. Struct., 17(6), 065008.   DOI
70 Lin, S. and Wang, S.J. (2011), "Radially composite piezoelectric ceramic tubular transducer in radial vibration", IEEE T. Ultrason. Ferr., 58(11), 2492-2498. DOI: 10.1109/TUFFC.2011.2106.   DOI