• Title/Summary/Keyword: Sensor Node Platform

Search Result 90, Processing Time 0.023 seconds

A study on WSN based ECG and body temperature measuring system for ubiquitous healthcare: 1. the construction of sensor network platform (유비쿼터스 헬스케어를 위한 센서 네트워크 기반의 심전도 및 체온 측정 시스템: 1. 센서 네트워크 플랫폼 구축)

  • Lee, Young-Dong;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.362-370
    • /
    • 2006
  • The wireless sensor network (WSN) based ECG and body temperature measuring system for ubiquitous health-care were designed and developed. The system was composed of a wireless sensor network node, base station and server computer for the continuous monitoring of ECG signals and body temperatures of patients at home or hospital. ECG signal and body temperature data, important vital signals which are commonly used in clinical and trauma care, were displayed on a graphical user interface (GUI). The data transfer from sensor nodes on patients' body to server computer was accomplished through a base-station connected to a server computer using Zigbee compatible IEEE802.15.4 standard wireless communication. Real-time as well as historical, ECG data of elderly persons or patients, can also be retrieved and played back to assist the diagnosis. The ubiquitous health care system presented in this study can effectively reduce social medical expenses, which will be increased greatly in the coming aging society.

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.

Implementation of RFID System using Wireless Sensor Networks (무선 센서 네트워크를 이용한 RFID 시스템 구현)

  • Jung, Kyung-Kwon;Lee, Seung-Joon;Lee, Chang-Won;Nghia, Truong Van;Chung, Sung-Boo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.858-861
    • /
    • 2011
  • In this paper, we present a RFID system by using a wireless sensor network. The proposed system is installed in glove for activity monitoring. The RFID reader, to send data by using sensor network platform and RFID tag are small size, the shape of quadrangle, and operate in the frequency of 13.56 MHz. The sensor node can read RFID tags on the various objects used in daily living such as furniture, medicines, and kitchenwares. The sensor node reads the data of RFID tags, it transmits wireless packets to the sink node. The sink node sends the received packet immediately to a server system. The data from each RFID system is collected into a database, and then the data are processed to visualize the measurement of daily living activities of users. We provide a web-based monitoring system, and can see the number of RFID tag readings per day as bar charts. The result of experiments demonstrates that the way we propose can help to check the situation of life for people who live alone.

  • PDF

Development of Daily Life Monitori ng System using RFID (RFID를 이용한 일상생활 모니터링 시스템 개발)

  • Jung, Kyung-Kwon;Park, Hyun-Sik;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.49-56
    • /
    • 2009
  • In this paper, we present a daily activity monitoring system by using a wireless sensor network. The proposed system is installed in glove for activity monitoring. The RFID reader, to send data by using sensor network platform and RFID tag are small size, the shape of quadrangle, and operate in the frequency of 13.56 MHz. The sensor node can read RFID tags on the various objects used in daily living such as furniture, medicines, and kitchenwares. The sensor node reads the data of RFID tags, it transmits wireless packets to the sink node. The sink node sends the received packet immediately to a server system. The data from each RFID system is collected into a database, and then the data are processed to visualize the measurement of daily living activities of users. We provide a web-based monitoring system, and can see the number of RFID tag readings per day as bar charts. The result of experiments demonstrates that the way we propose can help to check the situation of life for people who live alone.

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

Implementation of a ZigBee-based High Performance Sensor Node for the Robot Environment Platform (로봇환경플랫폼을 위한 직비 기반의 고성능 센서노드 구현)

  • Kim, Kee-Min;Lee, Kyung-Jung;Kim, Jae-O;Moon, Chan-Woo;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.69-75
    • /
    • 2010
  • In this paper, a ZigBee-based wireless sensor network is configured for the robot to effectively communicate with the environment platform where sensor nodes are implemented using high performance microcontrollers. The localization and the navigation functions are also required to the robot which performs the given task using various types of sensor information. A new type of ZigBee stack is developed using the RUM(Router Under MAC) of the Atmel Corp. and it is applied to a 32-bit ARM core microcontroller for the high performance sensor data manipulation and transmission. It is verified by experiments that the wireless sensor network consisting of developed high performance sensor nodes can be effectively used for the robot environment platform.

RSSI based Indoor Location Tracking System using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 실내위치인식 시스템)

  • Kwon, Joon-Dal;Shin, Jae-Wook;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.364-367
    • /
    • 2007
  • We combined CC2431(Chipcon, Norway), as the platform for the Indoor Location Tracking, which follows Zigbee/IEEE802.15.4 standards in RSSI (Received Signal Strength Indicator) and Base Station Node and then, embodied Indoor Location Tracking System. CC2431 is composed of the Reference Node that transfer its current position at the designated place and the Blind Node. The Blind node receives the current position(X and Y coordinates) of the Reference Node fields which are being contiguous and also, calculates its current position and transfers it to the Base Station Node. The base station node is used for receiving the current position of blind node and passing its data to the PC as a gateway. We can make sure where is the Blind Node not only from the out-of-the-way place of the server side but from the outside in a real-time.

  • PDF

Radio Frequency Based Emergency Exit Node Technology

  • Choi, Youngwoo;Kim, Dong Kyoo;Kang, Do Wook;Choi, Wan Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.91-100
    • /
    • 2013
  • This paper introduces an indoor sensor fusion wireless communication device which provides the Location Based Service (LBS) using fire prevention facility. The proposed system can provide information in real time by optimizing the hardware of Wi-Fi technology. The proposed system can be applied to a fire prevention facility (i.e., emergency exit) and provide information such as escape way, emergency exit location, and accident alarm to smart phone users, dedicated terminal holders, or other related organizations including guardians, which makes them respond instantly with lifesaving, emergency mobilization, etc. Also, the proposed system can be used as a composite fire detection sensor node with additional fire and motion detect sensors.

Design and Implementation of Magnetic Induction based Wireless Underground Communication System Supporting Distance Measurement

  • Kim, Min-Joon;Chae, Sung-Hun;Shim, Young-Bo;Lee, Dong-Hyun;Kim, Myung-Jin;Moon, Yeon-Kug;Kwon, Kon-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4227-4240
    • /
    • 2019
  • In this paper, we present our proposed magnetic induction based wireless communication system. The proposed system is designed to perform communication as well as distance measurement in underground environments. In order to improve the communication quality, we propose and implement the adaptive channel compensation technique. Based on the fact that the channel may be fast time-varying, we keep track of the channel status each time the data is received and accordingly compensate the channel coefficient for any change in the channel status. By using the proposed compensation technique, the developed platform can reliably communicate over distances of 10m while the packet error rate is being maintained under 5%. We also implement the distance measurement block that is useful for various applications that should promptly estimate the location of nearby nodes in communication. The distance between two nodes in communication is estimated by generating a table describing pairs of the magnetic signal strength and the corresponding distance. The experiment result shows that the platform can estimate the distance of a node located within 10m range with the measurement error less than 50cm.

A Study to Apply A Fog Computing Platform (포그 컴퓨팅 플랫폼 적용성 연구)

  • Lee, Kyeong-Min;Lee, Hoo-Myeong;Jo, Min-Sung;Choi, Hoon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.60-71
    • /
    • 2019
  • As IoT systems such as smart farms and smart cities become popular, a large amount of data collected from many sensor nodes is sent to a server in the Internet, which causes network traffic explosion, delay in delivery, and increase of server's workload. To solve these problems, the concept of fog computing has been proposed to store data between IoT systems and servers. In this study, we implemented a software platform of the fog node and applied it to the prototype smart farm system in order to check whether the problems listed above can be solved when using the fog node. When the fog node is used, the time taken to control an IoT device is lower than the response time of the existing IoT device-server case. We confirmed that it can also solve the problem of the Internet traffic explosion and the workload increase in the server. We also showed that the intelligent control of IoT system is feasible by having the data visualization in the server and real time remote control, emergency notification in the fog node as well as data storage which is the basic capability of the fog node.