A Study to Apply A Fog Computing Platform

포그 컴퓨팅 플랫폼 적용성 연구

  • 이경민 (충남대학교 컴퓨터공학과) ;
  • 이후명 (충남대학교 컴퓨터공학과) ;
  • 조민성 (충남대학교 컴퓨터공학과) ;
  • 최훈 (충남대학교 컴퓨터공학과)
  • Received : 2019.11.20
  • Accepted : 2019.12.18
  • Published : 2019.12.31

Abstract

As IoT systems such as smart farms and smart cities become popular, a large amount of data collected from many sensor nodes is sent to a server in the Internet, which causes network traffic explosion, delay in delivery, and increase of server's workload. To solve these problems, the concept of fog computing has been proposed to store data between IoT systems and servers. In this study, we implemented a software platform of the fog node and applied it to the prototype smart farm system in order to check whether the problems listed above can be solved when using the fog node. When the fog node is used, the time taken to control an IoT device is lower than the response time of the existing IoT device-server case. We confirmed that it can also solve the problem of the Internet traffic explosion and the workload increase in the server. We also showed that the intelligent control of IoT system is feasible by having the data visualization in the server and real time remote control, emergency notification in the fog node as well as data storage which is the basic capability of the fog node.

스마트팜이나 스마트시티와 같은 IoT 시스템이 보편화되면, 많은 센서 노드들로부터 수집된 대량의 데이터가 인터넷 내 서버로 전송되기 때문에 네트워크 트래픽 폭증, 전달 지연, 서버 부하증가 문제가 발생한다. 이러한 문제를 완화하기 위해 IoT 시스템과 서버와 사이에 데이터를 저장하는 포그 컴퓨팅 개념이 제안된 바 있다. 본 연구에서는 포그 노드의 소프트웨어 플랫폼을 구현하여 스마트팜(smart farm) 시험 구현물에 적용해 봄으로써, 포그 노드를 사용하는 경우 위에서 나열된 문제를 해결할 수 있음을 확인하였다. 포그 노드 플랫폼을 이용했을 때 IoT 장치를 제어하는데 걸리는 시간이 기존 IoT-서버 방식보다 더 낮아지는 것을 확인하였으며, 인터넷 내부 트래픽 폭증, 부하 증가 문제를 해결할 수 있음을 확인하였다. 또한 포그 노드의 기본 기능인 IoT 데이터 저장뿐만 아니라, 실시간 원격제어, 긴급 알림, 데이터 시각화의 기능을 본 논문의 포그 노드에 구현해 봄으로써 보다 지능적인 IoT 제어가 가능함을 보였다.

Keywords

References

  1. "The Future of IoT Markets in North America", http://news.kotra.or.kr/user/globalAllBbs/kotranews/album/2/globalBbsDataAllView.do?dataIdx=157802&searchNationCd=101001, Accessed on 21, Mar, 2019.
  2. "New paradigm of big data age, fog computing", http://biz.chosun.com/site/data/html_dir/2016/10/21/2016102102501.html, Accessed on 21, Mar, 2019.
  3. "IoT Network for Fog Computing Networks", https://patents.google.com/patent/KR101574026B1/ko, Accessed on 21, Mar, 2019.
  4. "Rural population growth, young people growth trend", http://www.ilyoweekly.co.kr/news/articleView.html?idxno=23275, Accessed on 21, Mar, 2019.
  5. CISCO, "Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are", https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf, Accessed on 21, Mar, 2019.
  6. "How is Cloud different from Edge in an IoT Environment", https://www.cognixia.com/blog/cloud-different-edge-iot-environment, Accessed on 21, Mar, 2019.
  7. WhatIs.com, IoT Gateway, https://whatis.techtarget.com/definition/IoT-gateway, Accessed on 21, Aug, 2019.
  8. Feyza Yildirim Okay, Suat Ozdemir, "A fog computing based smart grid model", Proc. of the Institute of Electrical and Electronics Engineers, 978-1-5090-0284-92016, 2016.
  9. Rakhee Kundu et al. "Smart Agriculture: Solution for the growing world!", International Journal of Interdisciplinary Innovative Research & Development, Volume 02, Special Issue 05, July. 2018.
  10. Marcel Caria et al. "Smart Farm Computing Systems for Animal Welfare Monitoring", international convention on information and communication technology, electronics and microelectronics, May. 2017.
  11. Sucharitha. V, Prakash. P, "AgriFog- A Fog Computing based IoT for Smart Agriculture ", International Journal of Recent Technology and Engineering, volume-7, Issue-6, Mar. 2019.
  12. 김재하, "엣지 컴퓨팅 기반의 의료정보 시스템에 대한 현황 연구", 한국차세대컴퓨팅학회 논문지, 제15권 제4호, pp.30-39, 2019. 8.
  13. 김정호, 김재각, 전문석, "사물인터넷 환경에서 MQTT Broker를 활용한 지속-재인증 프로토콜 설계", 한국차세대컴퓨팅학회 논문지, 제15권 제4호, pp.69-79, 2019. 8.
  14. Thing Plus, "NodeMCU User guide", http://support.thingplus.net/ko/open-hardware/nodemcu-user-guide.html, Accessed on 21, Mar, 2019.
  15. "DHT11, DHT22 Sensors", https://learn.adafruit.com/dht, Accessed on 21, Mar, 2019.
  16. Waveshare, "MQ-135-Gas-Sensor", https://www.waveshare.com/w/upload/2/24/MQ-135-Gas-Sensor-UserManual.pdf, Accessed on 21, Mar, 2019.
  17. "IR Obstacle Proximity Sensor Arduino Interface", http://blog.circuits4you.com/2016/04/arduino-ir-proximity-sensor-interfacing.html, Accessed on 21, Mar, 2019.