• Title/Summary/Keyword: Sensitivity coefficients

Search Result 442, Processing Time 0.045 seconds

Parametric Sensitivity Analyses of Linear System relative to the Characteristic Ratios of Coefficient (I) : A General Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(I): 일반적인 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.205-215
    • /
    • 2004
  • The characteristic ratio assignment (CRA) method〔1〕 is new polynomial approach which allows to directly address the transient responses such as overshoot and speed of response time in time domain specifications. The method is based on the relationships between time response and characteristic ratios($\alpha_i$ ) and generalized time constant (T), which are defined in terms of coefficients of characteristic polynomial. However, even though the CRA can apply to developing a linear controller that meets good transient responses, there are still some fundamental questions to be explored. For the purpose of this, we have analyzed several sensitivities of a linear system with respect to the changes of coefficients itself and $\alpha_i$ of denominator polynomial. They are (i) the unnormalized root sensitivity : to determine how the poles change as $\alpha_i$ changes, and (ii) the function sensitivity to determine the sensitivity of step response to the change of o, and to analyze the sensitivity of frequency response as o, changes. As an other important result, it is shown that, under any fixed T and coefficient of the lowest order of s in denominator, the step response is dominantly affected merely by $\alpha_1, alpha_2 and alpha_3$ regardless of the order of denominator higher than 4. This means that the rest of the$\alpha_i$ s have little effect on the step response. These results provide some useful insight and background theory when we select $\alpha_i$ and T to compose a reference model, and in particular when we design a low order controllers such as PID controller.

Sensitivity analysis of 20:1 zoom infrared optical system with zernike polynomial coefficients (제르니케(Zernike)계수를 이용한 20:1 줌 적외선 광학계 민감도 분석)

  • 최세철;김현숙;김창우;김연수;이국환;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.535-544
    • /
    • 2003
  • The sensitivity analysis of a middle wave infrared optical system with 20: 1 zoom ratio is performed to analyze manufacturing and alignment tolerances, and to establish the alignment logic and the focus control strategy. The characteristics of the sensitivities of Zernike coefficients are investigated to all mechanical displacements and several zoom positions using Code-V Macro. From this result, the tolerances of manufacturing and alignment of the optical system are derived and the effective alignment logic is established. Futhermore, an effective focus control strategy is established to make the system simple and compact.

Stress-Sensors with High-Sensitivity Using the Combined Meandering-Patterns

  • Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this work, the combined meandering-pattern stress-sensors were presented in order to achieve the high sensitivity of stress sensors. Compared to the previous works, which have been using the single meandering-pattern stress-sensors, the sensitivity was approximately observed to increase by 30%~70%. Also, in this paper, more simple and convenient stress-measurement method was presented.

Crack Detection in Beam using Sensitivity Coefficient of Modal Data (모달 데이터의 감도계수를 이용하여 보의 균열 탐지)

  • Lee, Jung Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.950-956
    • /
    • 2013
  • This paper describes a sensitivity-coefficient-based iterative method for detecting cracks in a structure. The sensitivity coefficients of a cracked structure are obtained by changing its eigenvectors. The proposed method is applied to a cracked cantilever. The crack is modeled as a rotational stiffness. The predicted cracks are in good agreement with those from a structural reanalysis of the cracked structure.

A Geometrical Expansion Technique for Tolerance Approach to Sensitivity Analysis in Linear Programming

  • Kim, Koon Chan;Jo, Young Soo;Kang, Young Yug
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.35-47
    • /
    • 1996
  • The tolerance approach to the sensitivity analysis in linear programming considers simultaneous and independent variations in the coefficients of the objective function or of the right-hand side terms and gives a region in which the coefficients and terms can be changed and still keeps the current optimal basis B for the original problem as an optimal basis for the perturbed problem. In this paper we describe a procedure that expands the region S obtained by the tolerance approach into a larger region R, so that more variations in the objective function coefficients or the right-hand side terms are permissible.

  • PDF

Parameter identification for an underwater vehicle using a sensitivity analysis (민감도 분석을 이용한 수중운동체의 계수식별)

  • 박성택;박찬국;임경식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1667-1670
    • /
    • 1997
  • We consider the probelem of identifying and underwater vehicle. It is assumed that a priori information about the parameteric model structure and values of the hydrodynamic coefficients is available from some other schemes. The concept of relative esnsitivity is introduced to plan and efficinet identification procedure. An analysis of the sensitivity of the overall system to a particular hydrodynamic coefficinet provides a tool to evaluate the relative importance of the same coefficient in a particular maneuver. Then it can be made possible to reduce the filter size by selecting some dominatn hydrodynamic coefficients as parameters to be estimated for a given maneuver, and this fact may be used for establishing a gradual identification scheme. The main merit of a gradual identification is substantially reduced computer burden with increased nimerical stability. An illustrative simualtion result is given.

  • PDF

Analysis of Design Parameter of Structural Modification using Change of Dynamic Characteristics (동특성 변화로부터 구조물의 변경된 설계파라미터 해석)

  • Oh Jae-Eung;Lee Jung-Woo;Lee Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.387-392
    • /
    • 2006
  • This paper predicts the modified mass and stiffness of structure using the sensitivity coefficients with the iterative method. The sensitivity coefficients are obtained by the change of the eigenvectors according to structural modification. The method is applied to an examples of a 3 degree of freedom system by modifying mass and stiffness. The predicted mass and stiffness are in good agreement with these from the structural reanalysis using the modified mass and stiffness.

Analysis of mass and location of proportional damping system using the change of eigenvectors (고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

A Study on the Sensitivity Analysis of Submersibles' Manoeuvrability (수중운동체의 조종성능에 대한 민감도 해석법의 적용)

  • Yeo, Dong-Jin;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.458-465
    • /
    • 2005
  • Sensitivity Analysis(SA) is used to predict how the model response varies according to changes in the model parameters. With SA, confidences in models which are developed to approximate certain processes and their predictions can be increased. The influences of hydrodynamic coefficients on the prediction of manoeuvrability are examined by SA of direct method. The equations of motion used are the standard equations of motion for submarine(Gertler 1967), and submerged bodies with three different appendages are considered. Through numerical simulations of three kinds of sea trials, the sensitivities of motions to hydrodynamic coefficients are found. Changes of sensitivities during trials are found to be highly dependent on the actuator scenarios and geometry of submerged body.

Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

  • Yoonhee Lee;Yong Jin Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2079-2091
    • /
    • 2024
  • In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.