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A Geometrical Expansion Technique for Tolerance Approach
to Sensitivity Analysis in Linear Programming

Koon-Chan Kim*- Young-Soo Jo** - Young-Yug Kang**

Abstract

The tolerance approach to the sensitivity analysis in linear programming considers simultaneous
and independent variations in the coefficients of the objective function or of the right-hand side
terms and gives a region in which the coefficients and terms can be changed and still keeps the cur-
rent optimal basis B for the original problem as an optimal basis for the perturbed problem. In this
paper we describe a procedure that expands the region S obtained by the tolerance approach into a
larger region R, so that more variations in the objective function coefficients or the right-hand side

terms are permissible.
1. Introduction

Suppose that the following linear programming has been solved and an optimal basis is

produced by the simplex method,

"

minimize Y. c¢ax;
=i

s.t. Z]agx,:b,', i=l,...,m (1)
;=

Xlyo-oyXn = 0.
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Suppose that one alters the coefficients ¢ of the objective function or the right-hand side
terms b in (1). A question to be raised is how much can one change them so that the cur-
rent optimal basis remains optimal. Usually, the “ordinary” sensitivity analysis deals with a
perturbation of one coefficient or one right-hand side term at a time [1, 2].

The tolerance approach [3, 4] considers simultaneous and independent variations in the
coefficients of the objective function or in the right-hand side terms and produces a specific
region S contained in a so-called critical region P, within which the coefficients or right-hand
side terms can be changed, leaving the optimal basis intact.

The region S generated by the tolerance approach could be small if the values of the given
cost coefficients or the right-hand side terms are near zero or if they are closer to the bound-
ary of the critical region. The purpose of this paper is to describe a technique for expanding
the region S obtained by the tolerance approach with additive variation into a larger region
R such that SSRSP. If at least one expansion is possible, the expanded region allows more
variations than the tolerance approach proposed by Wendell [4].

This paper is organized as follows. In section 2, we first describe an expansion technique on
a set of inequalities. We then reconsider the tolerance approach in section 3. Section 4
demonstrates how a region S obtained by the tolerance approach can be expanded into a
larger region R using the procedure(algorithm. TAE) described in detail in section 2.3.

Conclusions and topics of further study are discussed in Section 5.
I. An Expansion Technique

Here we pose the following problem: Given a polytope P defined by the following set of

inequalities,

awn T ape, + - tanx, < b
anx; + awx, + - tame, < b
: P (2)

amX1 T @mx, + o tapx, < b

with at least one interior point ¥° in P, we would like to find a specific region R with y°€ R
such that RSP. An approach would consist of finding an S contained in P and expanding S

as much as possible; of course, ¥° must be in S.
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2.1 Computing a Region S

By denoting the above polytope (2) as Ax<b and calling this an ‘x’-critical region, we want
to find a vector « such that A(y°+a«)<bh. This can be written as Aasb—Ay°=E, ie.,

;a.-,-a,-sz,- for i=1,...,m. (3)

Similarly, we call (3) an ‘a’-critical region. Note that % is the ith component of b and each
5>0 since y° is an interior point. To find a suitable «, we compute «,>0 as the largest
value such that so long as —a,<a<a, the inequalities in (3) should be satisfied. For any &
20, the largest that the left-hand side in (3) can ever get subject to —a,<g<a,, j=1,...,n

is (¥, lasl)& for each 7. Hence,
a,=max {#20:Y la;/a<b} for i=1,...,m.
=
If we let

b

'y,'= ”
Zj:l |aif|

for i=1,...,m, then
a*=min{7/1, yz, ceey ym}. (4)

This computation is done based on the Tchebycheff norm, and see [4] for its application on
the development of the tolerence approach. If we let each component of « be a,, ie, a=(a,, a,

.., a,)", then Aa<b and
S =]_£I[y°j—a*, ¥ita,] (5

will be contained in P with y°€S. Here, [ab] denotes a closed interval and the product is
the Cartesian product. Notice above that « is a vector, but «, and & are scalars, and S
represents a square in K% a cube in R®, and so on. Also, y° becomes the center point of S.

To illustrate this point, consider the following example whose graph is given in Figure 1.

Example 1: —2x+ x,<2
x+ x<3

4x,—5x,<20

- 0<2
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By letting y°=(2, 0), Ae<b—Ay°=b becomes

—2u+ 2,<6
ot e<l
4oy — 50, <12

— <2

(6)

and o), =a,=min{",=6/3, ¥,=1/2, ¥,=12/9, ¥i=2/1}=1/2. The range of S and its region are

given below.

S=[15, 25]x[—0.5, 0.5]

¢ :]72
\\
/
T T T T T S Yyo T J’l
Figure 1.

2.2 Expansion of Region S

Next, we discuss an expansion R of S such that SCRSP. The basic idea is to find a new
interior point yi by moving away from the boundary of the polytope and to apply the pro-

cedure given in section 2.1. The expansion can be done as many times as possible by repeat-
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ing the above steps until a termination criterion is satisfied.
Upon obtaining «,, we suppose that an €th inequality in (6) becomes tight(if more than

one, choose arbitrarily) in the following sense :
2w |t laclait- -+ 2wl ag=be. ™

We will find a point z=(zi, 2»...,2,) belonging to the corresponding boundary of the 2th in-
equality in Example 1 and which becomes a corner point(vertex) of S as follows.

Proposition 1 If «, and S are obtained by (4) and (8), respectively, and Lth inequality in
(3) becomes tight in the sense of (7), then a point z=(21, z,,..., z.) belonging to the bound-
ary of the Qth inequality of (2) and which becomes a corner point(vertex) of S is given by

Yita, if a;>0
zZ =9 y—a, if 2,<0

¥ or yHa, or yi—a, if ag=0, j=1,...,n.

Proof : The proof is easily established by noting that each left term in (7) contributes a
nonnegative amount whose sum is equal to :>0. This implies, in particular, that if a,<0 for

some j, then a negative amount —a] must be multiplied to this coefficient, i.e.,

ol o agea, if ag>0
agy * = o -
vl ay(—ay) if ay <0.

Substituting Al;g=bg—(aagf{+---+ac,y‘,’,) in (7) and rearranging, one can see that the
components of a point z that satisfies the boundary of the £th inequality in (2) must have

the above form. i
In Example 1, for y°=(2, 0), we have £ =2 and a:=%. Since a,>0 and a»>0, we add % to

each »] and y; to obtain
z=(2.5, (.5).

This point belongs to the boundary of the second inequality of Example 1 (see Figure 2).
Then we consider a direction eminating from the point z and passing through the point y°

and determine a point y' in P as follows :
y=y+(y°~z)=z+2(y"—2z).

Note that the distance between the points z and y°, y° and y' are the same. In example 1,
y'=(15 —05) (see Figure 2).
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Now, we repeat the procedure given in section 2.1 by starting at y', i.e., we replace y° by
1

y.
For y'=(L5, —05), Aasb—Ayl=E becomes

—2aF a < 55
at o < 20
4ay—5a, < |15

— a < 15

Then we calculate « as in (4). At this point only one of the two possible cases can occur :

(1) &, < 24,
() a, = 24,

If (I) occurs, we terminate the expansion process (see Section 2.3 for its meaning and other
expansion strategies) and should be satisfied with the region R=S. However, if (II) results,
the region S can be expanded into a larger region R that contains S. For the above problem,
ai=min{55/3, 2/2, 11.5/9, 1.5/1}=1. Note that =24, and hence it satisfies the second
case (II). Of course, the same z is obtained. Then the range of the expanded region R

becomes
R=[0.5, 25]x[—15, 0.5].

It is obtained by taking +o, amount in each axis from its center point y'. In general, at the

ith step, the range of R is given as
R=]] [y~ ytal.

For the case above, i=1 and see Figure 2 below for the expansion from S to R. By comput-
ing y'=z+2(y'—2)=(0.5, —1.5), one can further test for a possible expansion, but it can be

easily shown that a.<2a, at y”. Hence, one can terminate the expansion process at this point.
2.3 An Expansion Algorithm
The procedure given in the previous subsection, estimating a, in the ‘a’<critical region and

obtaining a region S in the ‘x’-critical region in repetitive fasion, is summarized as a toler-

ance approach expansion algorithm.
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Figure Z.
Algorithm TAE

begin
Given a polytope P(Ax<h), an interior point y°, NMAX, and a step length «
STEP 0:: < 0
Form Aa<b+Ay’=/(3°)
Compute a3, S, and z, as in (4), (5) and Proposition 1
STEP 1:¢ « +1
R« S
Y=ztx(y"'—2)
Form Aa<b+Ay'=f(y)
Compute & as in (4)
STEP 2:If termination criterion is satisfied or i=NMAX, exit with R
If d,=xa."then
Compute S at y' using (8)
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Go to STEP 1
end
end

The above algorithm terminates when the following criterion is satisfied.

Termination Criterion :
d < o'

For the illustration in Section 2.2, we used x=Z. By setting an upper limit for the number of
iterations, NMAX, the algorithm terminates in a finite number of steps. This is useful if the
critical region is unbounded and requires an infinite number of expansion iterations. An expan-
sion is also possible, however, if 0<ai<ko)™', but one can visualize that an explicit range of R
can not be obtained easily.

In »-dimensional space, there are 2"—1 possible directions for an expansion of S, For
example, when #=2, three directions can be considered, see Figure 2. In Step 1 of the algor-
ithm TAE, we always use the “diagonal direction” eminating from the point z and passing
through the center point y". This direction is casy to be described and the explicit range of
the region R can be efficiently computed.

The step length x in the expression y'=z+x(y' ' —z) determines the size of R at each iter-
ation. One can use many different values of x, for example, k=2, ¥=(i+1)% k=2, and so on.
For the numerical experiment in this paper, we only used x=2, a linear step length expansion.
For n-dimensional space, however, the size of the expanded region R becomes 2" times the size

of the previous region S if x=2.
. The Tolerance Approach

In this section we reconsider the tolerance approach proposed by Wendell[4]. From the lin-

ear program given in (1), we consider the following perturbed problem.

minimize Y (¢;+ ac’)x;
n Jj=1
s.t. Z:lagac;=b;, i=1,...,m (9)
=

X1y .y Xy = 0.

We denote B an optimal basis of (1) and IR the index set of the nonbasic variables. Let

/=B 'a, as usual. Then, B remains an optimal basis in (9) if
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é(C&'*'aB,Cxla, Yyi—(citaic)) <0 (10)

for each j€IR, where cp, cp, as denote the corresponding basic variable coefficients in the
vectors ¢, ¢, a, respectively. Note that if ¢’=1{i.e., each ¢;=1), then « becomes an additive
parameter and would represent additive variation in the coefficients. And if ¢’ =¢, then «
would represent multiplicative variation.

A maximum allowable tolerance on the multip/icaiive variation in the objective function
coefficients is denoted by a7 (a7”>0 is the largest value such that whenever —aT™ <a<a™
for each j=1,...,n, the basis B is still an optimal basis for the perturbed problem (9)) and is

given by

mult e Ci—Rj
;" =minimum

T eyl +lc;|
je IR,
where IR ={j€IR: Y. lcsy;l+Ic/1>0}, see [1, 4] for more detail. A maximum allowable
tolerance on the additive variation would then be
Z,i':l |J’i|+“|
je IR,

add s -
a," =minimum

where IR ={j € IR: Y., |ys]+[1|>0}

For an illustration, consider the following problem given in [1],

minimize —2x+ 2 —x;
s.t.  xitxta <6
—x11 2% < 4 (11)

X1, Xy X3 = 0.

For this problem, the optimal simplex tableau is given by

Z X1 X2 X3 X4 X5 RHS
z 1/]0 3 1 2 0 -12
X 60j]1 1 1 1 0 6
Xs 00 3 1 1 1 10

The minimum is attained at x*=(6, 0, 0, 0, 10). The index set for the basic variable IB={1,
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5} and for the nonbasic variable JR={2, 3, 4}. For the multiplicative variation, we get &7
=minimum {3/3, 1/3, 2/2}=1/3. This implies that the objective coefficients can vary within

1
3

0, 0) be the original objective function coefficients, then a region 7 containing ¢°, in which

a tolerance of 33— percent and the given basis will remain optimal. If we let ¢°=(—2, 1, —1,

the basis B is still an optimal basis, is given by
T= [-8/3, —4/31x[2/3, 4/31>[—4/3, —2/3]x[0, 0] %[0, 0].

Note that when ¢,=¢;=0, no variation is permissible.

For an additive variation, we obtain 2% =minimum{3/5, 1/3, 2/3}=1/3 and

S=[~7/3, —5/31x[2/3, 4/31x[—4/3, —=2/3]1x[—-1/3, 1/31x[-=1/3, 1/3].
V. Expansion Technique on Additive Variation

Letting czg=c¢/=1 for all { and j in (10) gives
gl (catap)y;—(cta) <0

for each j € IR. We can think of Y. cs ¥;—¢<9 as an ‘C’<ritical region, and if we let ¢"=¢,
then Y. (GG+an)yv;— (¢} a)<0 becomes an ‘a’<ritical region with ¢° as an initial interior
point of the ‘c’<ritical region. Notice that this becomes exactly the same situation described
in Section 2, and the algorithm TAE can be applied on these critical regions. Rearranging the

above expression gives

il s

YVion— @< cf—gl Gyi=r(c”) (12)

for each j € IR.
4.1 Numerical Ilustration

We consider a numerical experiment that is intended to provide an illustration of the per-
formance of the algorithm TAE. We again use the example in (11) as a test problem. For this

problem we set k=2, and the following initial ‘a’-critical region is obtained :

a) —ay T 3[15 < 3
[44] —ay "“ o < 1

a —ayt a2,
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where each ' column corresponds to the variable x. By the algorithm TAE in section 2.3, «,
=min{3/5, 1/3, 2/3}=1/3 and z=(-5/3, 4/3, —4/3, 1/3, 1/3}, taking z,=y +a«, whenever
a,;=0. Then, ¢'=z+2(¢’~2z)=(—-7/3, 2/3, —2/3, —1/3, —1/3). This gives

S=[=7/3, =5/31x[2/3, 4/31x[—-4/3, -2/31x[—-1/3, 1/31x[~1/3, 1/3].

To expand the region, we replace ¢ by ¢' in (1), which gives

an —ar _*' 3a5 < 4
a —ay + a < 2
[24] 2 73 + [+ S —g_.

Again, ol=min{4/5, 2/3, 7/91=2/3 and note that (II) is satisfied. Now, ¢'=z+2(¢'—z)=
(—3,0,0, =1, —1) and trying to expand once more, the right-hand side vector gives (6, 4, 3)
and o%= min{6/5, 4/3, 3/3}=1. At this point, note that a%<2a), and hence, we stop the
1

procedure of the expansion algorithm. The region R is obtained from (8), replacing yi by ¢

and using «,=2/3, as
R=[-3, —-5/31x[0, 4/31x{ -4/, 0] x[ -1, 1/3]x[ -1, 1/3].

Notice that S < R. When no variation on a certain coefficient or a set of coefficients is
desired, then one can set the corresponding «)5s t¢ zero and the expansion can be done on the
remaining set of the coefficients.

Next, for the expansion of the right-hand side Lerms, consider the following perturbed prob-

lem from (1) :

minimize }, ¢¥;

IR

s.t. a,-jx,=b,<+/9.~b',v Zzl, PR (] (13)

1=

i

Xlyoon ,anO.

Let B be an optimal basis of (1), and the components of B™' as By for i, 7=1,...,m. Then,
B will be an optimal basis for the above perturbed problem (13) if

) Bi(bApb) =0, i=1,...,m. (14)
Letting b;=1 for each j in (14) gives the additive variation, and we have

Y —Bip<b, i=1,...,m, (15)
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where b =B™'b. The maximum allowable tolerances on the additive variation is given by

g inimu ___L
=minimum . —
* L __B ijl |

detf=1

ie IB',

where IB*={j € IB:Y | —B3|>0}. For the problem in (11), b>=b=(6, 4) and the optimal

ST
=11 111

and the ‘f’-critical region of the parameter is given as

basis and its inverse are

-5 < 6
-8 B < 10.

Following the algorithm TAE in section 2.3, 8.=5 and z=(1, —1). Then, b'=(11, 9) and this
gives S=[1, 111x[ -1, 9].
To expand the region, we replace b in (15) by b', which gives

-5 < 11
_ﬂl —ﬂz < 20.

Again, £,=10 and (Il) is satisfied. Now, b*=(21, 19) and R=[1, 21]1x[—1, 19]. Trying to ex-
pand once more, the right-hand side vector becomes (21, 40) and £=20 which also satisfies
(). For this particular problem, this process can be continued indefinitely(letting

NMAX=o) and the final expanded region R can be obtained as

When the right-hand side terms are within this range, the optimal basis is unchanged for the

perturbed problem.

V. Concluding Remarks

While the tolerence approach is trying to fird a range in which the objective function

coefficients or the right-hand side terms can be changed on a “one-time” basis, the expansion
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method, if possible, is trying to expand the region as many times as possible starting from
the result obtained by the tolerence approach. This strategy is especially advantageous if the
initial vectors ¢ or b° are closer to the boundary of the critical region{polytope). Although
the results are not shown in this paper, we have also tested the algorithm TAE on a set of
other problems and obtained similar results as expected.

When a value of the objective function coefficient or of the right-hand side term is zero, no
range of the variation can be obtained by the multiplicative variation, but the additive vari-
ation assigns exactly the same amount of the range to each of the component, whether it is
zero or not. Also, for the multiplicative variation, it is possible, in the expansion process, that
the values of the components of the newly found :nterior point ¢ or b’ become zero or almost
zero. If this happens, virtually no variation is permissible on these components since the toler-
ance approach with the multiplicative variation gives percentage variations based on the
values of the coefficients or the right-hand side terms. Hence, some other strategies must be
explored. Further work also includes application of the algorithm TAE on codes that can solve

practical problems.
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