• Title/Summary/Keyword: Semigroup

Search Result 381, Processing Time 0.025 seconds

HESITANT FUZZY SEMIGROUPS WITH TWO FRONTIERS

  • Jun, Young Bae;Lee, Kyoung Ja;Park, Chul Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • The notion of hesitant fuzzy semigroups with two frontiers is introduced, and related properties are investigated. Relations between a hesitant fuzzy semigroups with a frontier and a hesitant fuzzy semigroups with two frontiers are discussed. It is shown that the hesitant intersection of two hesitant fuzzy semigroups with two frontiers is a hesitant fuzzy semigroup with two frontiers. We provide an example to show that the hesitant union of two hesitant fuzzy semigroups with two frontiers may not be a hesitant fuzzy semigroup with two frontiers.

ON THE PUBLIC KEY CRYPTOSYSTEMS OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • Kim, Young-Tae;Kim, Chang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.577-586
    • /
    • 2006
  • In this paper we will propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structures of class SEMIGROUPS of imaginary quadratic orders which were given by Zanardo and Zannier [8], and we will give a general algorithm for calculating power of ideals/classes via the Dirichlet composition of quadratic forms which is applicable to cryptography in the class semigroup of imaginary quadratic non-maximal order and revisit the cryptosystem of Kim and Moon [5] using a Zanardo and Zannier [8]'s quantity as their secret key, in order to analyze Jacobson [7]'s revised cryptosystem based on the class semigroup which is an alternative of Kim and Moon [5]'s.

A Note on Intuitionistic Fuzzy Ideals of Semigroup

  • Hur Kul;Roh Seok-Beom;Jang Kyung-Won;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.492-495
    • /
    • 2005
  • We give the characterization of an intuitionistic fuzzy ideal[resp. intuitionistic fuzzy left ideal, an intuitionistic fuzzy right ideal and an intuitionistic fuzzy hi-ideal] generated by an intuitionistic fuzzy set in a semigroup without any condition. And we prove that every intuitionistic fuzzy ideal of a semigroup S is the union of a family of intuitionistic fuzzy principle ideals of 5. Finally, we investigate the intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set in $S^{1}$

  • PDF

SEMIGROUPS OF TRANSFORMATIONS WITH INVARIANT SET

  • Honyam, Preeyanuch;Sanwong, Jintana
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.289-300
    • /
    • 2011
  • Let T(X) denote the semigroup (under composition) of transformations from X into itself. For a fixed nonempty subset Y of X, let S(X, Y) = {${\alpha}\;{\in}\;T(X)\;:\;Y\;{\alpha}\;{\subseteq}\;Y$}. Then S(X, Y) is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, we characterize when S(X, Y) is isomorphic to T(Z) for some set Z and prove that every semigroup A can be embedded in S($A^1$, A). Then we describe Green's relations for S(X, Y) and apply these results to obtain its group H-classes and ideals.

SEMIGROUP RINGS AS H-DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2011
  • Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type (0, 0, 0, ${\ldots}$), and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a $v$-ideal. We also show that if $\mathbb{R}$ is the eld of real numbers and if ${\Gamma}$ is the additive group of rational numbers, then $\mathbb{R}[{\Gamma}]$ is not an H-domain.

SOME RESULTS ON THE LOCALLY EQUIVALENCE ON A NON-REGULAR SEMIGROUP

  • Atlihan, Sevgi
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • On any semigroup S, there is an equivalence relation ${\phi}^S$, called the locally equivalence relation, given by a ${\phi}^Sb{\Leftrightarrow}aSa=bSb$ for all $a$, $b{\in}S$. In Theorem 4 [4], Tiefenbach has shown that if ${\phi}^S$ is a band congruence, then $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is a group. We show in this study that $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is also a group whenever a is any idempotent element of S. Another main result of this study is to investigate the relationships between $[a]_{{\phi}^S}$ and $aSa$ in terms of semigroup theory, where ${\phi}^S$ may not be a band congruence.

Stabilization of Co Semigroups in infinite dimensional systems by a compact linear feedback via the steady state Riccati equation

  • Park, Dong-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.729-733
    • /
    • 1987
  • Stability of Co Semigroups perturbed via the steady state Riccati equation (SSRE) is studied. We consider an infinite dimensional system : .chi. over dot = A.chi. + Bu, in, (A), domain of A, where A is the infinitesimal generator of a Co semigroup [T(t), t.geq.0] in H. If the original Co semigroup [T(t), t.geq.0] has a lower bound : vertical bar T(t).chi. vertical bar .geq. k vertical bar .chi. vertical bar, for all .chi. in H. t.geq. 0 and k>0, then the perturbed Co semigroup via the SSRE, where the feedback operator B is compact, cannot be exponentially stable. Physical interpretation of this result is as follows : in real applications, a finite number of actuators are available, therefore the operator B is compact. When the original system is inherently unstable, that is, has an infinite number of unstable modes, the perturbed system via the SSRE cannot be stable with a uniform decay rate.

  • PDF

THE MULTILEVEL SECURITY PROBLEM OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONGTAE
    • Honam Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • A scheme based on the cryptography for enforcing multilevel security in a system where hierarchy is represented by a partially ordered set was first introduced by Akl et al. But the key generation algorithm of Akl et al. is infeasible when there is a large number of users. In 1985, MacKinnon et al. proposed a paper containing a condition which prevents cooperative attacks and optimizes the assignment in order to overcome this shortage. In 2005, Kim et al. proposed key management systems for multilevel security using one-way hash function, RSA algorithm, Poset dimension and Clifford semigroup in the context of modern cryptography. In particular, the key management system using Clifford semigroup of imaginary quadratic non-maximal orders is based on the fact that the computation of a key ideal $K_0$ from an ideal $EK_0$ seems to be difficult unless E is equivalent to O. We, in this paper, show that computing preimages under the bonding homomorphism is not difficult, and that the multilevel cryptosystem based on the Clifford semigroup is insecure and improper to the key management system.

  • PDF

On the Subsemigroups of a Finite Cyclic Semigroup

  • Dobbs, David Earl;Latham, Brett Kathleen
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.607-617
    • /
    • 2014
  • Let S = C(r,m), the finite cyclic semigroup with index r and period m. Each subsemigroup of S is cyclic if and only if either r = 1; r = 2; or r = 3 with m odd. For $r{\neq}1$, the maximum value of the minimum number of elements in a (minimal) generating set of a subsemigroup of S is 1 if r = 3 and m is odd; 2 if r = 3 and m is even; (r-1)/2 if r is odd and unequal to 3; and r/2 if r is even. The number of cyclic subsemigroups of S is $r-1+{\tau}(m)$. Formulas are also given for the number of 2-generated subsemigroups of S and the total number of subsemigroups of S. The minimal generating sets of subsemigroups of S are characterized, and the problem of counting them is analyzed.

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

  • Gao, Zhenlin;Zhang, Guijie
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • Here, some classes of regular order semigroups are discussed. We shall consider that the problems of the existences of (multiplicative) inverse $^{\delta}po$-transversals for such classes of po-semigroups and obtain the following main results: (1) Giving the equivalent conditions of the existence of inverse $^{\delta}po$-transversals for regular order semigroups (2) showing the order orthodox semigroups with biggest inverses have necessarily a weakly multiplicative inverse $^{\delta}po$-transversal. (3) If the Green's relation $\cal{R}$ and $\cal{L}$ are strongly regular (see. sec.1), then any principally ordered regular semigroup (resp. ordered regular semigroup with biggest inverses) has necessarily a multiplicative inverse $^{\delta}po$-transversal. (4) Giving the structure theorem of principally ordered semigroups (resp. ordered regular semigroups with biggest inverses) on which $\cal{R}$ and $\cal{L}$ are strongly regular.