A Note on Intuitionistic Fuzzy Ideals of Semigroup

Kul Hur¹, Seok-Beom Roh², Kyung-Won Jang², and Tae-Chon Ahn²

1 Division of Mathematics and Informational Statistics, Wonkwang University, Iksan, Chonbuk, Korea 579-792

2 Department of Electrical Electronic and Information Engineering, Wonkwang University, Iksan, Chonbuk, Korea 579-792 tcahn@wonkwang.ac.kr

Abstract

We give the characterization of an intuitionistic fuzzy ideal[resp. intuitionistic fuzzy left ideal, an intuitionistic fuzzy right ideal and an intuitionistic fuzzy bi-ideal] generated by an intuitionistic fuzzy set in a semigroup without any condition. And we prove that every intuitionistic fuzzy ideal of a semigroup S is the union of a family of intuitionistic fuzzy principle ideals of S. Finally, we investigate the intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set in S¹.

1 Introduction

In his pioneering paper[21], Zadeh introduced the notion of a fuzzy set in a set X as a mapping from X into the closed unit interval [0, 1]. Since then, some researchers[16,17,19,20] applied this notion to semigroup and group theory. In 1986, Atanassov[2] introduced the concept of intuitionistic fuzzy sets as the generalization of fuzzy sets. Recently Coker and his colleagues[6,7,8], Hur and his colleagues [13], and Lee and Lee[18] introduced the concept of intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets and investigated some of their properties. In 1989, Biswas[3] introduced the concept of intuitionistic fuzzy

subgroups and studied some of it's properties. In 2003, Banerjee and Basnet[2] investigated intuitionistic fuzzy subrings and intuitionistic fuzzy ideals using intuitionistic fuzzy sets. Also, Hur colleagues[1,9-11, 14, 15] applied the notion of intuitionistic fuzzy sets to algebra. Moreover, Hur and his colleagues[12] applied one to topological group. In this paper, we give the characterization of an intuitionistic fuzzy ideal[resp. intuitionistic fuzzy left ideal, an intuitionistic fuzzy right ideal and an intuitionistic fuzzy bi-ideal] generated intuitionistic fuzzy set in a semigroup without any condition. And we prove that every intuitionistic fuzzy ideal of a semigroup S is the union of a family of intuitionistic fuzzy principle ideals of S. Finally, we investigate the intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set in S¹.

2. Preliminaries

We will list some concept and one result needed in the later sections. For sets X, Y and Z, $f=(f_1f_2):X{\longrightarrow}Y{\times}Z$ is called a *complex mapping* if $f_1:X{\longrightarrow}Y$ and $f_2:X{\longrightarrow}Z$ are mappings.

Throughout this paper, we will denote the unit interval [0,1] and \boldsymbol{L}

Definition 2.1[2.6]. Let X be a nonempty set. A complex mapping $A = (\mu_A, \nu_A) : X \rightarrow I \times I$ is called an intuitionistic fuzzy set(in short, IFS) in X if $\mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$, where the mapping $\mu_A : X \rightarrow I$ and $\nu_A : X \rightarrow I$ denote the degree of membership (navely $\mu_A(x)$) and the degree of non-membership(namely $\nu_A(x)$) of each $x \in X$ to A, respectively. In particular, 0 and 1 denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole set in a set X defined by $0_{\sim}(x) = (0,1)$ and $1_{\sim}(x) = (1,0)$ for each $x \in X$, respectively.

We will denote the set of all IFSs in X as IFS(X). **Definition 2.2[2].** Let X be a nonempty sets and

Definition 2.2[2]. Let X be a nonempty sets and $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be an **IFS**s in X. Then

- (1) $A \subset B$ if and only if $\mu_A \le \mu_B$ and $\nu_A \ge \nu_B$.
- (2) A = B if and only if $A \subset B$ and $B \supset A$.
- (3) $A^c = (\nu_A, \mu_A)$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B)$
- $(5) A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B)$
- (6) $[]A = (\mu_A, 1 \mu_A), < > A = (1 \nu_A, \nu_A)$

Definition 2.3[6]. Let $\{A_i\}_{i\in J}$ be an arbitrary family of **IFSs** in X, where $A_i=(\mu_{Ai},\nu_{Ai})$ for each $i\in J$. Then

- $(1) \cap A_i = (\wedge \mu_A, \vee \nu_A)$
- (2) $\cup A_i = (\vee \mu_A, \wedge \nu_A)$

Definition 2.4[18]. Let λ , $\mu \in I$ with $\lambda + \mu \leq 1$. An intuitionistic fuzzy point(in short, **IFP**) $x_{(\lambda,\mu)}$ of X is **IFS** in a set X defined by for each $y \in X$

$$x_{(\lambda,\mu)}(y) = \begin{cases} (\lambda,\mu) & \text{if } y = x \\ (0,1) & \text{otherwise} \end{cases}$$

In this case, x is called the *support* of $x_{(\lambda,\mu)}$ and μ are called the *value* and the *nonvalue* of $x_{(\lambda,\mu)}$, respectively. An **IFP** $x_{(\lambda,\mu)}$ is said to *belong* to an **IFS** $A=(\mu_A,\nu_A)$ in X, denoted by $x_{(\lambda,\mu)}{\in}A$, if

 $\lambda \le \mu_A(x)$ and $\mu \ge \nu_A(x)$.

Clearly an intuitionstic fuzzy point can be represented by an ordered pair of fuzzy points as follows:

$$x_{(\lambda,\mu)} = (x_{\lambda}, 1 - x_{1-\mu})$$

We will denote the set of all **IFPs** in a set X **IF**p(X). **Definition 2.5[9].** Let A be an **IFS** in a set X and let $(\lambda,\mu) \in I \times I$ with $\lambda + \mu \leq 1$. Then the set $A^{(\lambda,\mu)} = \{x \in X: \mu_A(x) \geq \lambda \text{ and } \nu_A(x) \leq \mu\}$ is called a (λ,μ) -level subset of A

Result 2.1[18, Theorem 2.4]. Let X be a set and let $A \in IFS(X)$. Then

$$A = \bigcup \{x_{(\lambda,\mu)} \colon x_{(\lambda,\mu)} \in A\}.$$

In fact, it is not difficult to see that

$$A = \bigcup_{x \in A^{(0,1)}} x_{A(x)}.$$

3. Intuitionstic ideals generated by intuitionistic fuzzy sets

Lets S be a semigroup. By a S we mean a non-empty subset of A of such that

 $A^2 \subset A$

and by a [resp] ideal of S we mean a non-empty subset of S such that

 $SA \subset A \quad [resp. AS \subset A],$

By tow-sided ideal or simply ideal we mean a subset A of S which is both a left and a right ideal of S. We well denote the set of all left ideals [resp right ideals and ideals] of S as LI(S) [resp. RI(S) and I(S)].

Definition 3.1[9]. Let S be a semigroup and let $0 \neq A \in IFS(S)$. Then A is called an:

(1) intuitionistic fuzzy subsemigroup (in short, IFSG) of S if $\mu_A(xy) \ge \mu_A(x) \wedge \mu_A(y)$ and

 $\nu_A(xy) \le \nu_A(x) \lor \nu_A(y)$ for any $x,y \in S$,

(2) intuitionistic fuzzy left ideal (in short, IFLI) of S if $\mu_A(xy) \geq \mu_A(y)$ and $\nu_A(xy) \leq \nu_A(y)$

for any $x,y \in S$,

(3) intuitionistic fuzzy right ideal (in short, IFSG) of S if $\mu_A(xy) \ge \mu_A(x)$ and $\nu_A(xy) \le \nu_A(x)$

for any $x, y \in S$,

(4) intuitionistic fuzzy (two-sided) ideal (in short, IFI) of S if is both an in-tuitionistic fuzzy left and an intuitionistic fuzzy right ideal of S.

We well denote the set of all IFSGs [resp. IFLIs, IFRIs and LFIs] of S as IFSG(S) [resp. IFLI(S), IFRI(S) and IFI(S)]. It is clear that $A{\in}$ IFI(S) if and only if $\mu_A(xy) \geq \mu_A(x) \vee \mu_A(y)$ and $\nu_A(xy) \leq \nu_A \wedge \nu_A(y)$ for any $x,y{\in}S$, and if $A{\in}$ IFLI(S)[resp. IFRI(S) and IFI(S)], then $A{\in}$ IFSG(S).

Result 3.1[9, Proposition 3.7 and 14, Proposition 2.3]. Let S be a semi-group and let $(\lambda,\mu) \in I \times I$ with $\lambda + \mu \le 1$. Then $A \in \mathbf{IFSG}(S)$ [resp. $\mathbf{IFI}(S)$, $\mathbf{IFLI}(S)$ and $\mathbf{IFRI}(S)$] if and only if $A^{(\lambda,\mu)}$ is a subdemigroup [resp. ideal, left ideal and right ideal] of S.

It is well-known[4] that I is complete completely distributive lattice. Thus we have the following result.

Proposition 3.1. Let S be a semigroup. Then $\mathbf{IFI}(S)$ is a complete completely distributive lattice with respect to the meet ' \cap ' and the union ' \cup '.

Definition 3.2. Let S be a semigroup and let $A \in IFS(S)$. Then the least IFLI[resp. IFRI] and IFI] of S containing A is called the IFLI[resp. IFRI] and IFI] of S generated by A and is denoted by $(A)_L$ [resp. $(A)_R$ and $(A)_L$].

Lemma 3.1. Let X be a set, let $A \in \mathbf{IFS}(X)$ and let $x \in X$. Then $A(x) = (\vee_{x \in A^{(\lambda,\mu)}} \lambda, \wedge_{x \in A^{(\lambda,\mu)}} \mu)$,

where $\lambda, \mu \in I$ with $\lambda + \mu \leq 1$.

Proof. Let $\lambda_0 = \bigvee_{x \in A^{(\lambda,\mu)}} \lambda$, let $\mu_0 = \bigwedge_{x \in A^{(\lambda,\mu)}} \mu$ and let $\epsilon > 0$. Then $\bigvee_{x \in A^{(\lambda,\mu)}} \lambda > \lambda_0 - \epsilon$ and $\bigwedge_{x \in A^{(\lambda,\mu)}} \mu < \mu_0 + \epsilon$. Thus there exists $(s,t) \in \{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\}$ such that $s > \lambda_0 - \epsilon$ and $t < \mu_0 + \epsilon$. Since $x \in A^{(\lambda,\mu)}$, $\mu_A(x) \ge \lambda$ and $\nu_A(x) \le \mu$. Then $\mu_A(x) > \lambda_0 - \epsilon$ and $\nu_A(x) < \mu_0$. Since ϵ is an arbitrary real number, $\mu_A(x) \ge \lambda_0$ and $\nu_A(x) \le \mu_0$. On the other hand, let A(x) = (s,t). Then $x \in A^{(s,t)}$. Thus $(s,t) \in \{(\lambda,\mu) : x \in A^{(\lambda,\mu)}\}$.

So $s \leq \bigvee_{x \in A^{(\lambda,\mu)}} \lambda$ and $t \geq \bigwedge_{x \in A^{(\lambda,\mu)}} \mu$, i.e.,

 $\mu_A(x) = s \le \lambda_0 \text{ and } \nu_A(x) = t \ge \mu_0.$

Hence $A(x) = (\mu_A(x), \nu_A(x)) = (\lambda_0, \mu_0)$

Theorem 3.1. Let S be a semigroup, let $A \in \mathbf{IFS}(S)$ and let $(\lambda,\mu) \in I \times I$ with $\lambda + \mu \leq 1$. We define a complex mapping $A^* = (\mu_A \cdot, \nu_A \cdot) : S {\rightarrow} I {\times} I$ as follows for each $x \in S$

$$A^*(x) = \left(\bigvee_{x \in (A^{(\lambda,\mu)})} \lambda, \bigwedge_{x \in A^{(\lambda,\mu)}} \mu\right)$$

Then $A^* = (A)$, where $(A^{(\lambda,\mu)})$ denotes the ideal generated by $A^{(\lambda,\mu)}$

Proof. For each $x{\in}S$, let $(s,t){\in}\{(\lambda\mu):x{\in}A^{(\lambda,\mu)}\}$. Then $x=A^{(s,t)}$. Thus $x{\in}(A^{(s,t)})$. So $(s,t){\in}\{(\lambda\mu):x{\in}(A^{(\lambda,\mu)})\}$, I.e., $\{(\lambda\mu):x{\in}(A^{(\lambda,\mu)})\}{\subset}\{(\lambda\mu):x{\in}(A^{(\lambda,\mu)})\}$. Then, by Lemma 3.1,

 $\mu_{A}(x) = \vee_{x \in A^{(\lambda,\mu)}} \mu \leq \vee_{x \in (A^{(\lambda,\mu)})} \mu = \mu_{A} \cdot (x)$

and
$$\mu_A(x) = \bigwedge_{x \in A^{(\lambda, \mu)}} \mu \ge \bigwedge_{x \in (A^{(\lambda, \mu)})} \mu = \nu_{A^*}(x)$$

So $A \subset A^*$. For each $(s,t) \in InA^*$, let $s_n = s - \frac{1}{n}$ and

 $t_{\scriptscriptstyle n} = t - \frac{1}{n} \quad \text{ for each } n \in N. \quad \text{Let } x \in A^{\bullet(s,t)} \; . \quad \text{Then}$ $\mu_{A^{\bullet}}(x) \geq s \quad \text{and} \quad \nu_{A^{\bullet}}(x) \leq t \; . \; \text{Thus, for each } n \in N$

$$\bigvee_{x \in (A^{(\lambda_p)})} \lambda \leq s > s - \frac{1}{n} = s_n$$

and

So there exists $\mathbf{a}(\lambda_n, \mu_n) \in (\lambda, \mu) : x \in (A^{(\lambda, \mu)})$ such that $\lambda_n > s_n$ and $\mu_n < t_n$. Then $A^{(\lambda_n, \mu_n)} \subset A^{(s_n, t_n)}$. $x \in (A^{(\lambda_n, \mu_n)}) \subset (A^{(s_n, t_n)})$. Consequently, we have $x \in \cap_{n \in \mathcal{N}} (A^{(s_n, t_n)})$. Now let $x \in \cap_{n \in \mathcal{N}} (A^{(s_n, t_n)})$. Then clearly $(s_n, t_n) \in (\lambda, \mu) : x \in (A^{(\lambda, \mu)})$ for each $n \in \mathcal{N}$. Thus

for each
$$n \in \mathbb{N}$$
, $s - \frac{1}{n} = s_n \le \bigvee_{x \in (A^{(\lambda_n)})} \lambda = \mu_{A^*}(x)$ and

 $t-\frac{1}{n}=t_n \leq \wedge_{x \in (A^{(s_n)})} \lambda = \nu_{A^*}(x)$. Since n is an arbitrary positive interger, $s \leq \mu_{A^*}(x)$ and $t \geq \nu_{A^*}(x)$. Thus . So $A^{*(s,t)} \in \cap_{n \in \mathcal{N}} (A^{(s_nt_n)})$. It is clear that $\cap_{n \in \mathcal{N}} (A^{(s_nt_n)})$ is an ideal of S. So, by Result 3.1, $A^* \in \mathrm{IFI}(S)$.

Now let $B\!\!\in\!\! \mathrm{IFI}(S)$ such that $A\!\subset\! B$ and let $x\!\!\in\!\! S$. If $A^*(x) = (0,1)$, then clearly $\mu_{A^*}(x) < \mu_B(x)$ and $\nu_{A^*}(x) > \nu_B(x)$, i.e., $A^* \subset B$. If $A^*(x)(s,t) \neq (0,1)$, then $x\!\!\in\!\! A^*(s,t) = \cap_{n\in\mathcal{N}} (A^{(s,t,t)})$.

Thus $x \in (A^{(s_n t_n)}) = A^{(s_n t_n)} S \cup SA^{(s_n t_n)} S \cup A^{(s_n t_n)} S \cup A^{(s_n t_n)} S \cup A^{(s_n t_n)}$ for each $n \in \mathbb{N}$. We consider the following cases:

Case(i) : Suppose $x\in A^{(s_n\epsilon_n)}$. Then clearly for each $n\in N$ $s_n\leq \mu_B(x)$ and .

Case(ii): Suppose $x \in A^{(s_n t_n)}$. Then there exist $a \in A^{(s_n t_n)}$ and $b \in S$ such that x = ab. Thus for each $n \in N$ $s_n \le \mu_A(a) \le \mu_B(b) \le \mu_B(ab) = \mu_B(x)$ and

 $t_n \ge \nu_A(a) \ge \nu_B(b) \ge \nu_B(ab) = \nu_B(x)$

Case(iii) : Suppose $x \in SA^{(s_nt_n)}$. Then by the similar arguments of Case(ii), we have $\mu_B(x) \ge s_n$ and $\nu_B(x) \ge t_n$ for each $n \in N$

Case(iiii): Suppose $x \in SA^{(s_n t_n)}$. Then there exist $a \in A^{(s_n t_n)}$ and $b \in S$ such that x = abc. Since $B \in IFI(S)$. for each $n \in N$

 $s_n \le \mu_A(a) \le \mu_B(a) \le \mu_B(x)$ and $t_n \ge \nu_A(a) \ge \nu_B(a) \ge \nu_B(x)$.

Since n is an arbitrary number in N, in all, $\mu_{A^*}(x) = s \le \mu_B(x)$ and $\nu_{A^*}(x) = t \ge \nu_B(x)$. Thus $A^* \subset B$. Hence $A^* = (A)$. This complete the proof.

Corollary 3.1. Let S be a semigroup and let $x_{(\lambda,\mu)} \in I\!\!P_p(S)$. We define a complex mapping $(x_{(\lambda,\mu)}): S\!\!\to\!\! I\!\!\times\! I$ as follows : for each $x\!=\!S$,

$$(x_{(\lambda,\mu)})(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x), \\ (0,1) & \text{if } y \notin (x), \end{cases}$$

where (x) is the principal ideal of S generated by x. Then $(x_{(\lambda,\mu)})$ is the IFI generated by $x_{(\lambda,\mu)}$. In this case, $(x_{(\lambda,\mu)})$ is called the intuitionistic fuzzy principal ideal(in short, *IFPI*) of S generated by $x_{(\lambda,\mu)}$.

Proof. By Theorem 3.1

 $(x_{(\lambda,\mu)})(y) = (\bigvee_{z \in (A^{(\mu)})} s_i \wedge_{z \in (A^{(\mu)})} t)$ for each $y \in S$.

Case(i): Suppose $y \in (x)$. Let $(s,t) \in (0,\lambda] \times [\mu,1)$. Then $A^{(s,t)} = z \in S$: $\mu_{x(\lambda,\mu)}(z) \ge s$, $\nu_{x(\lambda,\mu)}(z) \le t = x$. Thus $y \in (x) = (A^{(s,t)})$. If $s > \lambda$ and $t > \mu$, then clearly $x_{(\lambda,\mu)} = (0,1)$, So

$$(x_{(\lambda,\mu)})(y) = (\bigvee_{z \in (A^{(\mu)})} s, \bigwedge_{z \in (A^{(\mu)})} t) = (\bigvee_{0 < s \le \lambda} s, \bigwedge_{\mu \le t < 1} t) = (\lambda,\mu).$$
Case (ii) : Suppose $y \in (x)$. Assume that

Case (ii) : Suppose $y \not\in (x)$. Assume that $(x_{(\lambda,\mu)})(y) \neq (0,1)$. Then there exists $(s,t) \in (0,\lambda] \times [\mu,1)$ with $s+t \leq 1$ such that $y \in (A^{(s,t)})$. Since $A^{(s,t)} \neq (0,1)$, by Case (i), $s \leq \lambda$ and $t \geq \mu$. Thus $A^{(\lambda,\mu)} = x$. So $y \in (A^{(s,t)}) = (x)$. This is a contradiction. Thus $(x_{(\lambda,\mu)})(y) = (0,1)$. Hence $(x_{(\lambda,\mu)})$ is well-defined.

The following is an easy modification of Theorem 3.1. **Theorem 3.2.** Let S be a semigroup and let $A \in IFI(S)$. We define a complex mapping $(x_{(\lambda,\mu)}): S \rightarrow I \times I$ as follows: for each x = S,

$$A^{*}(x) = (\bigvee_{x \in (A^{(\lambda_{P})})_{L}} \lambda, \bigwedge_{x \in (A^{(\lambda_{P})})_{L}} \mu)$$

then $A^* = (A)_L$, where $(A^{(\lambda,\mu)})_L$ denotes the left ideal generated by $A^{(\lambda,\mu)}$.

Corollary 3.2. Let S be a semigroup and let $x_{(\lambda,\mu)} \in IFp(S)$. We define two complex mapping $(x_{(\lambda,\mu)})_L : S \rightarrow I \times I$ and $(x_{(\lambda,\mu)})_R : S \rightarrow I \times I$ as follows,

respectively: for each $y \in S$, $(x_{(\lambda,\mu)})_L(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x)_D \\ (0,1) & \text{if } y \not\in (x)_D \end{cases} \quad \text{and} \quad$

$$(x_{(\lambda,\mu)})_R(y) = \begin{cases} (\lambda,\mu) \text{ if } y \in (x)_R, \\ (0,1) \text{ if } y \not\in (x)_R, \end{cases}$$

Then $(x_{(\lambda,\mu)})_L[resp.(x_{(\lambda,\mu)})_R]$ is the IFLI[resp. IFRI] of S generated by $x_{(\lambda,\mu)}$ in S.

In this case, $(x_{(\lambda,\mu)})_L[resp.(x_{(\lambda,\mu)})_R]$ is called the intuitionistic fuzzy principal [resp.] ideal(in short, IFPLI [resp.IFPRI]) generated by $x_{(\lambda,\mu)}$.

Proof. The proofs are similar to the case of Corollary 3.1. So we omit.

Remark 3.1. As the dual of Theorem 3.2, $(A)_R$ can be characterized by $(A)_R(x) = (\bigvee_{x \in (A^{(\lambda,\mu)}R^{\lambda})} \land_{x \in (A^{(\lambda,\mu)}R} \mu)$ for each x = S, where $(A^{(\lambda,\mu)})_R$ denotes the right ideal generated by $A^{(\lambda,\mu)}$.

A nonempty subset A of a semigroup S is called a bi-ideal of S if $A^2 \subset A$ and $ASA \subset A$. We will denote the set of all bi-ideal of S as BI(S).

Definition 3.3[14]. Let S be a semigroup and let $0 \ne A \in IFS(S)$. Then A is called an intuitionistic fuzzy bi-ideal(in short, IFBI) of S if it satisfies the following conditions: for any $x_1y_1z \in S$.

 $(i)\mu_A(xy) \ge \mu_A(x) \land \mu_A(y)$ and $\nu_A(xy) \le \nu_A(x) \lor \nu_A(y)$

 $(\mathrm{ii})\mu_A(xyz) \geq \mu_A(x) \wedge \mu_A(z) \qquad \text{and} \quad \nu_A(xyz) \leq \nu_A(x) \vee \nu_A(z) \quad .$

We will denote the set of all IFBIs of S as IFBI(S).

Result 3.2[14, Proposition 2.8]. Let S be a semigroup and let $A \in IFI(S)$.

Then $A \in IFI(S)$ if and only if $A^{(\lambda,\mu)} \in BI(S)$ for each $(\lambda,\mu) \in I \times I$ with $\lambda + \mu < 1$.

Let A be a subset of a semigroup S. Then it is not difficult to see that the bi-ideal $(A)_B$ generated by A in S is $A \cup A^2 \cup ASA$.

The following can be shown by the above comment, Result 3.2 and a moderate modification of Theorem 3.1.

Theorem 3.3. Let S be a semigroup and let $A \in FS(S)$. We define a complex mapping $A^*: S \rightarrow I \times I$ as follows: for each x = S,

$$A^*(x) = (\bigvee_{x \in (A^{(i_{n})}_{g})} \lambda, \bigwedge_{x \in (A^{(i_{n})}_{g})} \mu$$
) then $A^* = (A)_B$, where

 $(A)_B$ denotes the IFBI generated by A.

Corollary 3.2. Let S be a semigroup and let $x_{(\lambda,\mu)} \in IFp(S)$. We define two complex mapping $(x_{(\lambda,\mu)})_B: S \rightarrow I \times I$ follows, respectively: for each $y \in S$,

$$(x_{(\lambda,\mu)})_B(y) = \begin{cases} (\lambda,\mu) & \text{if } y \in (x)_B, \\ (0,1) & \text{if } y \not\in (x)_B, \end{cases}$$

Then $(x_{(\lambda,\mu)})_B$ is the IFBI of S generated by $x_{(\lambda,\mu)}$ in S. In this case, $(x_{(\lambda,\mu)})_B$ is called the intuitionistic fuzzy principal bi-ideal(in short, IFPBI)generated by $x_{(\lambda,\mu)}$.

Proof. The proofs is similar to the case of Corollary 3.1. So we omit. It is well-known that every ideal of a semigroup S is the union of some principal ideals of S. Similarly, we have the following result.

Theorem 3.4. Let S be a semigroup. Then every IFI of S is the union of some IFPIs of S.

Proof. Let $A \in IFI(S)$. Then, by Result 2.1,

$$A = \bigcup_{x_{0,\mu} \in A} x_{(\lambda,\mu)} = \bigcup_{x \in A^{u,v}} x_{A(x)}$$
. Let $y \in S$.

Case (i): Suppose $A(y) \neq (0,1)$, then

 $\textstyle \bigcup_{x\in A^{(y,l)}} x_{A(x)})(y) = (\bigcup_{y\in (z), z\in A^{(y,l)}}))(y)$

 $= (\vee_{y \in (z), z \in A^{(t,1)}} \mu_{A(z)}, \wedge_{y \in (z), z \in A^{(t,1)}} \nu_{A(z)})$. If $z \neq y$, then there exist $a_1, a_2, b_1, b_2 \in S$ such that $y=za_1$ or $y=a_2z$ or $y=b_1zb_2$. For any cases, since $A \in IFS(S)$, $\mu_A(y) \ge \mu_a(z)$ and $\nu_A(y) \le \nu_a(z)$. Thus

 $(\bigcup_{x\in A^{\oplus n}}x_{A(x)})(y)=(\bigvee_{y\in (z),z\in A^{\oplus n}}\mu_{A(z)}, \wedge_{y\in (z),z\in A^{\oplus n}}\nu_{A(z)})$ $= (\mu_{A(y)}, \nu_{A(y)}) = A(y)$.

Case (ii) : Suppose A(y) = (0,1) . Assume that there exists $z \in A^{(0,1)}$ such that $y \in (z)$. Then $\mu_{A(y)} \ge \mu_{A(z)}$ $\nu_{A(y)} \le \nu_{A(z)}$ as above. Thus $A(y) \ne (0,1)$. This is a contradiction. Then $y\not\in(z)$ for each $z\in A^{(0,1)}$. So $A(y) = (\bigcup_{x \in A^{(1)}} (x_{A(x)}))(y) = (0,1)$. Hence, in all,

 $A = \bigcup_{x \in A^{(0,1)}} x_{A(x)}$. This completes the proof.

4 Some special cases

In this case, we study intuitionistic fuzzy ideal generated by an IFS A in S^1 .

Theorem 4.2. Let S be a regular semigroup and let $A \in IFS(S^1)$. Then

$$A(a) = (\bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} \nu_A(x_2)) \text{ for each } a \in S.$$

Proof. Let $a \in S$ such that $a = x_1 x_2 x_3$ for some $x_1, x_2, x_3 \in S^1$ and $A(x_2) = (s,t)$. Then $x_2 \in A^{(s,t)}$. Thus $a \in (A^{(s,t)})$. So $A(x_2) \in ((s,t): a \in (A^{(s,t)}))$.

By theorem 3.1,

$$\mu_{A}(a) = \bigvee_{a \in (A^{(a)})} \quad s \ge \bigvee_{\substack{a = x_{1}x_{2}x_{3} \\ x_{1}, x_{2}, x_{3} \in S^{1}}} \mu_{A}(x_{2}) \quad \text{and}$$

$$\mu_{A}(a) = \bigwedge_{\substack{a \in (A^{(a)})}} \quad t \le \bigwedge_{\substack{a = x_{1}x_{2}x_{3} \\ x_{3}, x_{2} \in S^{1}}} \mu_{A}(x_{2})$$

$$(1)$$

On the other hand, let $(\lambda,\mu) \in \{(s,t) : a \in (A^{(s,t)})\}$. Then clearly $a \in (A^{(\lambda,\mu)})$. Thus there exist $x_1, x_2 \in S^1$ and $x_2 \in A^{(\lambda,\mu)}$ such that $a = x_1 x_2 x_3$. Since $x_2 \in A^{(\lambda,\mu)}$, $\mu_A(x_2) \ge \lambda$ and $\mu_A(x_2) \le \mu$. Then

$$\mu_{A}(a) = \bigvee_{a \in (A^{(a)})} s \leq \bigvee_{\substack{a = x_{1}x_{2}x_{3} \\ x_{1}, x_{2}, x_{3} \in S^{1}}} \mu_{A}(x_{2}) \text{ and}$$

$$\mu_{A}(a) = \bigwedge_{a \in (A^{(a)})} t \geq \bigwedge_{\substack{a = x_{1}x_{2}x_{3} \\ x_{1}, x_{2}, x_{3} \in S^{1}}} \mu_{A}(x_{2})$$
(2)

Hence, by (1) and (2),

$$A(a) = (\bigvee_{\substack{a = z_1 z_2 z_3 \\ z_1, z_2 z_3 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a = z_1 z_2 z_3 \\ x_1, z_2 z_3 \in S^1}} \nu_A(x_2)) \quad .$$

This complete the proof.

Remark 4.1. By theorem 3.1 and its dual, we can easily obtain $(A)_L$ [resp. $(A)_R$] generated by A in S^1 defined by $A_L(a) = (\bigvee_{\substack{a = x_1 x_2 \\ x_1, x_2 \in S^1}} \mu_A(x_2), \bigwedge_{\substack{a = x_1 x_2 \\ x_1, x_2 \in S^1}} \nu_A(x_2))$

$$[\text{resp.} A_{R}(a) = \bigvee_{\substack{a = x_{1}x_{2} \\ x_{1}, x_{2} \in S^{1}}} \sum_{\substack{a = x_{1}x_{2} \\ x_{1}, x_{2} \in S^{1}}} A_{R}(x_{1}), \bigwedge_{\substack{a = x_{1}x_{2} \\ x_{1}, x_{2} \in S_{1}}} \mu_{A}(x_{1})],$$

for each $a \in S$

Theorem 4.2. Let S be a regular semigroup and let $A \in IFS(S^1)$.

Then

$$(A)_{\beta}(a) = (\vee_{a = x_1, x_2, x_3} [\mu_A(x_1) \wedge \mu_A(x_3)], \wedge_{a = x_1, x_2, x_3} [\nu_A(x_1) \vee \nu_A(x_3)] \\ \xrightarrow{x_1, x_2, x_3 \in S^1} [\nu_A(x_1) \vee \nu_A(x_3)]$$

for each $a \in S$.

Proof. Let $a \in S$ such that $a = x_1 x_2 x_3$ some $x_1, x_2, x_3 \in S^1$

and let $(s,t) = (\mu_A(x_1) \land \mu_A(x_3), \nu_A(x_1) \lor \nu_A(x_3))$ Then clearly $x_1, x_3 \in A^{(s,t)}$. Thus clearly $a \in (A^{(s,t)})_B$

So $(\mu_A(x_1) \land \mu_A(x_3), \nu_A(x_1) \lor \nu_A(x_3)) \in \{(s,t) : a \in (A^{(s,t)})_B\}$ By theorem 3.3

$$\mu_{(A^{\omega_i})_{\underline{\beta}}}(a) = \vee_{a \in (A^{\omega_i})_{\underline{\beta}}} \underline{s} \geq \vee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in \mathcal{S}^1}} \left[\mu_A(x_1) \wedge \mu_A(x_3)\right] \qquad \text{and} \quad$$

$$\nu_{(A^{(n)})_B}(a) = \wedge_{a \in (A^{(n)})_B} \leq \wedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\nu_A(x_1) \vee \nu_A(x_3)]$$
(3)

Now let $(\lambda,\mu) \in \{(s,t) : a \in (A^{(s,t)})_B\}$. Then $a = (A^{(s,t)})_B = A^{(s,t)} \cup A^{(s,t)} A^{(s,t)} \cup A^{(s,t)} S^1 A^{(s,t)} = A^{(s,t)} \cup A^{(s,t)} S^1 A^{(s,t)}$ since S^1 is regular, $A^{(s,t)} \subset A^{(s,t)} S^1 A^{(s,t)}$.

Then $a \in (A^{(s,t)})_B = A^{(s,t)} S^1 A^{(s,t)}$. Thus there exist $x_1, x_3 \in A^{(s,t)}, \mu_A(x_1) \ge s, \mu_A(x_1) \le t$ $\mu_A(x_3) \ge s, \nu_A(x_3) \le t \quad .$

Then $\mu_A(x_1) \wedge \mu_A(x_3) \ge s, \nu_A(x_1) \vee \nu_A(x_3) \le t$. Thus $\mu_{(A^{(a)})_B}(a) = \bigvee_{a \in (A^{(a)})_B} s \ge \bigvee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^1}} [\mu_A(x_1) \land \mu_A(x_3)]$ and

$$\nu_{(A^{\omega)}_{b}}(a) = \bigwedge_{a \in (A^{\omega)}_{b}} s \le \bigwedge_{a = x_{1}x_{2}x_{3}} [\nu_{A}(x_{1}) \vee \nu_{A}(x_{3})]$$

$$x_{1} x_{2} x_{3} \in S^{1}$$

$$x_{3} \times x_{3} \in S^{1}$$

$$(4)$$

Hence, by (3) and (4),

 $(A^{(s,t)})_B(a) = (\vee_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^t}} [\mu_A(x_1) \wedge \mu_A(x_3)], \wedge_{\substack{a = x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S^t}} [\nu_A(x_1) \vee \nu_A(x_3)]$

This completes the proof.

감사의 글

본 연구는 산업자원부의 지원에 의하여 기초전 력연구원(R-2004-B-133-01) 주관으로 과제임.

Reference

- [1] Ahn Y.S., Hur K., Ryou J.H.: Intuitionistic fuzzy semiprime ideals of a semigroup. To submit
- [2] Atanassove K.: Intuitionistic fuzzy sets, Fuzzy Set and Systems, Vol. 20. (1986) 87 - 96
- [3] Banerjee B., Basnet D.Kr.: Intuitionistic fuzzy subrings and ideals, J.Fuzzy Math Vol. 11(1). (2003) 139 - 155
- [4] Birkhoff G.: Lattice Theory, AMS.Soc.Coll.Publ. Vol. 25. (1976)
- [5] Biswas R.: Intuitionistic fuzzy subrings, Mathematical Forum Vol. x. (1989) 37 - 46
- [6] Coker D.: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Set and Systems, Vol. 88. (1997) 81 - 89
- [7] Coker D., Haydar Es A.: On fuzzy compactness in intuitionistic fuzzy topological spaces, J.Fuzzy Math. Vol. 3. (1995) 899 - 909
- [8] Gurcay H., Coker D., Haydar Es A.: On fuzzy continuity in intuitionistic fuzzy topological spaces, J.Fuzzy Math. Vol. 5. (1997) 365 - 378
- [9] Hur K., Jang S.Y., Kang H.W.: Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems Vol. 3(1). (2003) 72 - 77
- [10] Hur K., Kang H.W., Song H.K.: Intuitionistic fuzzy subgroups and subrngs, Honam Math.J. Vol. 25(1), (2003) 19 - 41
- [11] Hur K., Jang S.Y., Kang H.W.: Intuitionistic fuzzy subgroups and cosets, Honam Math.J. Vol. 26(1). (2004) 17
- [12] Hur K., Jun Y.B., Ryou J.H.: Intuitionistic fuzzy topological groups, Honam Math.J. Vol. 26(2). (2004) 163