ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

ZHENLIN GAO AND GUIJIE ZHANG

ABSTRACT. Here, some classes of regular order semigroups are discussed. We shall consider that the problems of the existences of (multiplicative) inverse $^{\delta}$ po-transversals for such classes of po-semigroups and obtain the following main results: (1) Giving the equivalent conditions of the existence of inverse $^{\delta}$ po-transversals for regular order semigroups (2) showing the order orthodox semigroups with biggest inverses have necessarily a weakly multiplicative inverse $^{\delta}$ po-transversal. (3) If the Green's relation $\mathcal R$ and $\mathcal L$ are strongly regular (see. sec.1), then any principally ordered regular semigroup (resp. ordered regular semigroup with biggest inverses) has necessarily a multiplicative inverse $^{\delta}$ po-transversal. (4) Giving the structure theorem of principally ordered semigroups (resp. ordered regular semigroups with biggest inverses) on which $\mathcal R$ and $\mathcal L$ are strongly regular.

In T. S. Blyth and G. A. Pinto ([1]-[3]), the following concepts have been introduced and discussed.

A negative (resp. positive) ordered regular semigroup S means that S is an order semigroup (i.e. po-semigroup) in which for any $x \in S$ there is $s \in S$ such that $xsx \leq x$ (resp. $x \leq xsx$). A (negative) order regular semigroup S is said to be principally ordered, for short POR-semigroup S, if for any $x \in S$ there exists

$$x^* = \max\{y \in S \mid xyx \le x\}.$$

We refer the reader to [1, 2], if S is a POR-semigroup, then every $x \in S$ has a biggest inverse, namely the element $x^0 = x^*xx^* \in V(x)$ (which is the inverses set of x). Thus S becomes an ordered regular semigroup with biggest inverses (for short ORB-semigroup S) (see [3]). In this case we always denote the set of all biggest inverse of S by S^0 , i.e., $S^0 = \{x^0 \mid \forall x \in S\}$.

Conversely, an ORB-semigroup S is necessarily not a POR-semigroup. For example, we can prove that a naturally ordered ORB-semigroup (S, \leq) on which \mathcal{R} and \mathcal{L} are regular (see [7]) can not become a POR-semigroup. It need only to notice mapping $o: S \longrightarrow S^o$ denoted by $x \longrightarrow x^o$ is always antitone on a naturally ordered POR-semigroup (S, \leq) (see [2, Theorem 3.3] and [1]).

Received September 25, 2007; Revised December 18, 2007.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F05.$

Key words and phrases. regular order semigroup, inverse $^{\delta}$ po-transversals, POR-semigroups, ORB-semigroups.

This is in contradiction with the mapping o being isotone on E(S) (which is the set of all idempotents of S).

Let S be a po-semigroup. If S is also regular (resp. orthodox, inverse and so on) then we call that S is a regular (resp. orthodox, inverse and so on) posemigroup. Clearly, the POR- and ORB-semigroups are regular po-semigroups.

Let T be a po-subsemigroup of the regular po-semigroup S. If there is a surjective mapping δ from S to T denoted by $x \longrightarrow x^{\delta}$ such that

- (R1) $(\forall x \in S) \ x^{\delta} \in V_T(x) \text{ (where } V_T(x) = V(x) \cap T)$
- (O1) $(\forall x \in S) |V_T(x)| = 1$ then T is called an inverse $^{\delta}$ po-transversal of S. If T satisfies (R1),(O1) and
- (O2) $(\forall x, y \in S) \ x^{\delta} xyy^{\delta} \in E(T) \ (\text{resp.}(x^{\delta} xyy^{\delta})^{\delta} \in E(T))$

then S is said to be multiplicative (resp. weakly multiplicative). If T satisfies (R1), (O1) and

(O3) the maximum idempotent-separating congruence on S is the identity congruence on T.

then T is called a fundamental inverse ${}^{\delta}$ po-transversal of S.

Clearly, any inverse $^{\delta}$ po-transversal is an inverse transversal.

Let S be a ORB-semigroup. Green's relation \mathcal{R} and \mathcal{L} are called strongly regular if (S1) and (S2) hold :

- (S1) \mathcal{R} and \mathcal{L} are regular on S (i.e. $x \leq y \Longrightarrow xx^o \leq yy^o, x^ox \leq y^oy$)
- (S2) $(\forall e, f \in E(S))$ $e \leq_n f \Longrightarrow ee^o \leq ff^o$ and $e^o e \leq f^o f$

where the order " \leq_n " is the natural order on E(S).

Example 1. Using the method in [1, Example 1], let k > 1 be a fixed integer and for every positive integer n let n_k denote the biggest multiple of k that is less than or equal to n. Then integer set Z becomes a regular semigroup under the operation $+_k$ defined by $m +_k n = m + n_k$; Let (L, \wedge) be a semilattice and $L^{[2]} = \{(x,y) \in L \times L \mid y \leq x\}$. With the Cartesian order, let $M = L^{[2]} \times Z$. A typical element ((x,y),p) of M will be denoted by [x,y,p]. Define a binary operation on M by

$$[x, y, p][a, b, q] = [x \wedge a, y \wedge b, p + q_k].$$

Then M becomes a POR-semigroup and we have

$$[x, y, p]^* = [x, x, -p_k + k - 1]$$

$$[x, y, p]^0 = [x, y, (-p_k + k - 1)_k + k - 1];$$

$$E(M) = \{ [x, y, p] \in M \mid \forall (x, y) \in L^{[2]}, p \in Z \text{ such that } p_k = 0 \}.$$

Computing we know that E(M) is a left zero subband of M (i.e. E(M) is a subsemigroup of all idempotents of S). So M is orthodox. On M, Green's relation \mathcal{R} and \mathcal{L} are strongly regular. In fact, since the mapping $k:p\longrightarrow p_k$

is surjective on Z and has the property : if $p \leq q$ then $p + p_k \leq q + q_k$. So we have that if $[x, y, p] \leq [a, b, q]$ then

$$[x,y,p][x,y,p]^{0} = [x,y,p + ((-p_{k}+k-1)_{k}+k-1)_{k}]$$

$$\leq [a,b,q + ((-q_{k}+k-1)_{k}+k-1)_{k}]$$

$$= [a,b,q][a,b,q]^{0}.$$

Similarly $[x,y,p]^0[x,y,p] \leq [a,b,q]^0[a,b,q]$, that is, \mathcal{R} and \mathcal{L} are regular. Let $[x,y,p], [a,b,q] \in E(M)$, and $[x,y,p] \leq_n [a,b,q]$, notice $p_k = q_k = 0$ and

$$[x, y, p] = [x, y, p][a, b, q] = [a, b, q][x, y, p] = [x, y, q]$$

so p = q. Thus we have

$$[x, y, p][x, y, p]^0 = [x, y, p][x, y, k - 1] = [x, y, p] \le [a, b, p] = [a, b, p][a, b, p]^0.$$

Similarly $[x, y, p]^0[x, y, p] \leq [a, b, p]^0[a, b, p]$, that is, (S2) holds, which shows that \mathcal{R} and \mathcal{L} are strongly regular.

The inverse transversal of regular semigroups was first introduced by Blyth and McFadden in [4]. In structure description of regular semigroup S, the inverse transversal S^{δ} play very important roles. Thus we think that the existence of an inverse ${}^{\delta}$ transversal for a regular semigroup is of course very important problem. In this note, we study first the existence condition of inverse ${}^{\delta}$ po-transversals. In Section 1, we obtain necessary and sufficient conditions for a po-subsemigroup T of the regular po-semigroup S to be an inverse ${}^{\delta}$ po-transversal. Then in Section 2, we show that any order orthodox semigroup with biggest inverses S has necessarily a weakly multiplicative inverse ${}^{\delta}$ po-transversal S^{δ} with the mapping S is an anti-homomorphism. For an ORB-semigroup S on which S and S are strongly regular then we show that S has necessarily a multiplicative inverse ${}^{\delta}$ po-transversal. Hence, in Section 3, we give immediately the structure theorem of the POR-(resp. ORB-)semigroup S on which S and S are strongly regular.

1. The existence conditions of inverse $^{\delta}$ po-transversals

Since regular po-semigroups (resp. POR- and ORB-) are also the class of regular semigroups, so we list here some basic facts on a regular semigroup with inverse transversal used in this note, the reader can consult [4]-[7] for more details.

Lemma 1.1. Let S be a regular semigroup with inverse transversal S^0 . Then we have

- (1) $(\forall x, y \in S)(xy^o)^o = y^{oo}x^o \text{ and } (y^ox)^o = x^oy^{oo};$
- (2) $(\forall x, y \in S)(xy)^o = (x^o xy)^o x^o = y^o (xyy^o)^o = y^o (x^o xyy^o)^o x^o;$
- (3) $(\forall x, y \in S)$ $x \mathcal{L}$ y if and only if $x^o x = y^o y; x \mathcal{R} y$ if and only if $xx^o = yy^o;$
- (4) $I = \{xx^o \mid x \in S\}$ and $\land = \{x^ox \mid x \in S\}$ are subbands of S;
- (5) $(\forall x \in S) \ x^o = x^{ooo};$

- (6) S^o is multiplicative if and only if S^o is a quasi-ideal of S (i.e, $S^oSS^o \subseteq S^o$) and $e^o \in E(S^o)$ for every $e \in E(S)$;
- (7) If S is orthodox then $e^0 \in E(S)$ for any $e \in E(S)$ and S^0 is weakly multiplicative.

We shall give the existence conditions of inverse $^{\delta}$ po-transversals for the class of regular po-semigroups.

Theorem 1.2. Let S^{δ} be a po-subsemigroup of the regular po-semigroup S with the mapping δ is an anti-homomorphism from S to S^{δ} denoted by $x \longmapsto x^{\delta}$ such that $x^{\delta} \in V_{S^{\delta}}(x)$. The following conditions are equivalent:

- (1) S^{δ} is an inverse ${}^{\delta}$ po-transversal of S;
- (2) The equivalent relation

$$\nu = \{(x, y) \in S \times S \mid V_{S^{\delta}}(x) = V_{S^{\delta}}(y)\}$$

is the smallest inverse semigroup congruence on S and the mapping $\delta\delta$ is a morphism on S^{δ} .

Proof. (1) \Longrightarrow (2) Let S^{δ} be an inverse ${}^{\delta}$ po-transversal of S then S^{δ} is an inverse transversal of S as a regular semigroup. By Lemma 1.1 (5) $x^{\delta} = x^{\delta\delta\delta}$ for any $x \in S$. Notice that $|V_{S^{\delta}}(x)| = 1$ and $x^{\delta} \in V_{S^{\delta}}(x)$ for any $x \in S$. So we have that $(x,y) \in \nu$ if and only if $V_{S^{\delta}}(x) = V_{S^{\delta}}(y)$ if and only if $V_{S^{\delta}}(x^{\delta\delta}) = V_{S^{\delta}}(y^{\delta\delta})$ if and only if $x^{\delta} = y^{\delta}$ if and only if $x^{\delta\delta} = y^{\delta\delta}$. We denote the ν -class of containing x by $(x)_{\nu}$.

If $(x,y) \in \nu$ and $z \in S$ then $x^{\delta} = y^{\delta}$ and $z^{\delta} \in V_{S^{\delta}}(z)$. It follows from δ being an anti-homomorphism from S to S^{δ} then $(zx)^{\delta} = x^{\delta}z^{\delta} = y^{\delta}z^{\delta} = (zy)^{\delta}$, that is, $(zx, zy) \in \nu$. Similarly $(xz, yz) \in \nu$ and thus ν is a congruence on S.

To show that S/ν is inverse, notice first that it is certainly regular, since any homomorphic image of a regular semigroup is regular. Now, by Lallement's Lemma in [6, II.4.6] any idempotent of S/ν is of the form $e\nu$ denoted by $e\nu=(e)_{\nu}$ for $e\in E(S)$. For any $e,f\in E(S),e^{\delta}\in V_{S^{\delta}}(e),\,f^{\delta}\in V_{S^{\delta}}(f),$ by S^{δ} being inverse and δ being antihomomorphic we have $(ef)^{\delta}=f^{\delta}e^{\delta}=e^{\delta}f^{\delta}=(fe)^{\delta},$ that is, $(ef)_{\nu}=(fe)_{\nu}$ and $(e)_{\nu}(f)_{\nu}=(ef)_{\nu}=(fe)_{\nu}=(f)_{\nu}(e)_{\nu}$. Thus that S/ν is inverse.

Nextly, suppose that ξ is an inverse semigroup congruence on S. Let $(x,y) \in \nu$ for $x^{\delta} \in V_{S^{\delta}}(x) = V_{S^{\delta}}(y)$ and $(x^{\delta})_{\xi} \in S/\xi$. Then it is clear that $(x^{\delta})_{\xi}^{-1} = (x)_{\xi}$ and $(x^{\delta})_{\xi}^{-1} = (y)_{\xi}$ by $x^{\delta} = y^{\delta}$. Thus we obtain that $(x)_{\xi} = (y)_{\xi}$, that is, $(x,y) \in \xi$. Therefore $\nu \subseteq \xi$ and so ν is as stated in (2), the smallest inverse semigroup congruence on S.

Finally, let $x^{\delta}, y^{\delta} \in S^{\delta}$ since S^{δ} is an inverse ${}^{\delta}$ po-transversal of S so that $x^{\delta} = y^{\delta}$ if and only if $(x^{\delta})^{\delta\delta} = (y^{\delta})^{\delta\delta}$ by Lemma 1.1 (5), that is, the mapping $\delta\delta|_{S^{\delta}}$ is a morphism.

(2) \Longrightarrow (1) It need only to show that $|V_{S^{\delta}}(x)| = 1$ for any $x \in S$, because this means S^{δ} is an inverse ${}^{\delta}$ po-transversal of S by Definition in Sec 1. Let the

equivalence relation

$$\tau = \{(x, y) \in S \times S \mid x^{\delta} = y^{\delta}\}.$$

Then τ is a congruence on S by δ being anti-homomorphic and so $\xi = \tau \cap \nu$ is also. Clearly $(x)_{\xi} \subseteq (x)_{\nu}$ and $(x)_{\nu} = \bigcup_{y \in (x)_{\nu}} (y)_{\xi}$ for any $(x)_{\nu} \in S/\nu$. Since S/ν is inverse so there is $(y)_{\xi}^{-1} \in S/\xi$ such that $(y)_{\xi}^{-1}$ is the unique inverse of $(x)_{\xi}$ for any $(x)_{\xi} \in S/\xi$ and $y \in (x)_{\nu}$. Thus we show that S/ξ is also inverse. By the smallest property of ν we have $\xi = \nu$, that is, $\nu = \tau \cap \nu$.

Now, suppose that $y^{\delta} \in V_{S^{\delta}}(x)$ then $(x^{\delta})_{\nu}$ and $(y^{\delta})_{\nu}$ are both inverses in S/ν of $(x)_{\nu}$. By uniqueness of inverse in S/ν we conclude that $(x^{\delta})_{\nu} = (y^{\delta})_{\nu}$ and so $(x^{\delta})^{\delta} = (y^{\delta})^{\delta}$ by $\nu = \tau \cap \nu$. Thus we imply that $x^{\delta} = (x^{\delta})^{\delta\delta} = (x^{\delta\delta})^{\delta} = (y^{\delta\delta})^{\delta} = (y^{\delta})^{\delta\delta} = y^{\delta}$ by $\delta\delta|_{S^{\delta}}$ being a morphism, which shows that $|V_{S^{\delta}}(x)| = 1$ for any $x \in S$.

Corollary 1.3. Let S^{δ} be a po-subsemigroup of the ORB-(resp.POR-) semigroup S with the mapping δ is an anti-homomorphism from S to S^{δ} such that $x^{\delta} \in V_{S^{\delta}}(x)$ for any $x \in S$. The following conditions are equivalent;

- (1) S^{δ} is an inverse ${}^{\delta}$ po-transversal of S;
- (2) The equivalence relation

$$\nu = \{(x, y) \in S \times S \mid V_{S^{\delta}}(x) = V_{S^{\delta}}(y)\}$$

is the smallest inverse semigroup congruence on S and the mapping $\delta\delta$ is a morphism on S^{δ} .

Theorem 1.4. Let S^{δ} be a po-subsemigroup of the regular po-semigroup S with mapping δ is surjective from S to S^{δ} such that $x^{\delta} \in V_{S^{\delta}}(x)$ for any $x \in S$. Then the following statements are equivalent:

- (1) S^{δ} is a fundamental inverse ${}^{\delta}$ po-transversal of S;
- (2) The equivalent relation

$$\mu = \{(x, y) \in \mathcal{H} \mid x^{\delta} e x^{\delta \delta} = y^{\delta} e y^{\delta \delta} \text{ for any } e \in E(S^{\delta})\}$$

has the following properties:

 $(\mu 1)$ $\mu_{\delta} = \mu \cap (S^{\delta} \times S^{\delta})$ is the maximum idempotent separating congruence on S^{δ} and μ_{δ} is the identity congruence on S^{δ} ;

 $(\mu 2)$ μ is the smallest inverse semigroup congruence on S.

Proof. (1) \Longrightarrow (2) Let S^{δ} be as stated in (1) and $(x,y) \in \mu$, by $(x,y) \in \mathcal{H}$ then $xx^{\delta} = yy^{\delta}$ and $x^{\delta}x = y^{\delta}y$ by Lemma 1.1 (3). Now, for any $z \in S, e \in E(S^{\delta})$, we compute that

$$\begin{array}{lll} (zx)^{\delta}e(zx)^{\delta\delta} & = & x^{\delta}(zxx^{\delta})^{\delta}e(x^{\delta}(zxx^{\delta})^{\delta})^{\delta} & \text{(by Lemma 1.1 (2))} \\ & = & x^{\delta}(zxx^{\delta})^{\delta}e(zxx^{\delta})^{\delta\delta}x^{\delta\delta} & \text{(by Lemma 1.1 (1))} \\ & = & x^{\delta}(zyy^{\delta})^{\delta}e(zyy^{\delta})^{\delta\delta}x^{\delta\delta} & \text{(by } xx^{\delta} = yy^{\delta}) \\ & = & y^{\delta}(zyy^{\delta})^{\delta}e(zyy^{\delta})^{\delta\delta}y^{\delta\delta} & \text{(by } (zyy^{\delta})^{\delta}e(zyy^{\delta})^{\delta\delta} \in E(S^{\delta})) \\ & = & (zy)^{\delta}e(zy)^{\delta\delta} \end{array}$$

that is, $(zx, zy) \in \mu$. Similarly $(xz, yz) \in \mu$. Thus we obtain that μ is a congruence on S and S/μ is a regular (po-)semigroup as the proof of Theorem 1.2. By [6, V.Theorem 3.2], $\mu_{\delta} = \mu \cap (S^{\delta} \times S^{\delta})$ is the maximum idempotent-separating congruence on S^{δ} . If S^{δ} is fundamental then μ_{δ} is the identity on S^{δ} . This is the statement $(\mu 1)$.

To show the statement $(\mu 1)$.

To show the statement $(\mu 2)$ we notice that for any $(x)_{\mu} \in S/\mu$, $(x)_{\mu}$ contains the idempotent $x^{\delta\delta}(x^{\delta})^2x^{\delta\delta} \in E(S^{\delta})$. In fact, by $x \mathcal{L} x^{\delta}x$ and $x \mathcal{R} xx^{\delta}$ we have $xx^{\delta} = x^{\delta\delta}x^{\delta} = x^{\delta\delta}(x^{\delta\delta})^{\delta}$ and $x^{\delta}x = (x^{\delta\delta})^{\delta}x^{\delta\delta}$ so $x \mathcal{H} x^{\delta\delta}$. Clearly, $x^{\delta}ex^{\delta\delta} = (x^{\delta\delta})^{\delta}e(x^{\delta\delta})^{\delta\delta}$ by Lemma 1.1 (5), so that $x \mu x^{\delta\delta}$ and $x \mu x^{\delta\delta} \mu (x^{\delta\delta})^2 = (x^{\delta\delta})^2(x^{\delta})^2(x^{\delta\delta})^2 \mu x^{\delta\delta}(x^{\delta})^2x^{\delta\delta}$, that is, the idempotent $x^{\delta\delta}(x^{\delta})^2x^{\delta\delta} \in (x)_{\mu}$. If $(x)_{\mu}$ and $(y)_{\mu}$ are idempotents of S/μ then $(x)_{\mu} = (e)_{\mu}$ and $(y)_{\mu} = (f)_{\mu}$ for some $e, f \in E(S^{\delta})$. Thus we have

$$(x)_{\mu}(y)_{\mu} = (e)_{\mu}(f)_{\mu} = (ef)_{\mu} = (fe)_{\mu} = (f)_{\mu}(e)_{\mu} = (y)_{\mu}(x)_{\mu}$$

which shows that S/μ is inverse and clearly $(x)_{\mu}^{-1}=(x^{\delta})_{\mu}$ for any $x\in S$. Now, suppose that ξ is an inverse semigroup congruence on S. Let $(x,y)\in \mu$ then $(x)_{\mu}^{\delta}=(x)_{\mu}^{-1}=(y)_{\mu}^{-1}=(y^{\delta})_{\mu}$ and clearly $(x^{\delta})_{\mu^{\delta}}=(y^{\delta})_{\mu^{\delta}}$. Thus by $(\mu 1)$ we have that $x^{\delta}=y^{\delta}$. We consider that $(x)_{\xi}\in S/\xi$ since $x^{\delta}=y^{\delta}$ so that $(x^{\delta})_{\xi}$ and $(y^{\delta})_{\xi}$ are both inverse in S/μ of $(x)_{\xi}$ and so $(x^{\delta})_{\xi}=(x)_{\xi}^{-1}=(y)_{\xi}^{-1}=(y^{\delta})_{\xi}$ by the uniqueness of inverse in S/ξ . Thus we obtain $(x,y)\in \xi$, that is, $\mu\subseteq \xi$ which shows that μ is the smallest inverse semigroup congruence on S.

(2) \Longrightarrow (1) Suppose that the congruence μ has the properties (μ 1) and (μ 2) we shall prove that $|V_{S^{\delta}}(x)| = 1$ for any $x \in S$. Let $y^{\delta} \in V_{S^{\delta}}(x)$ then by (μ 2) we know that $(x^{\delta})_{\mu}$ and $(y^{\delta})_{\mu}$ are both inverse in S/μ of $(x)_{\mu}$. By the uniqueness of inverse in S/μ we obtain that $(x^{\delta})_{\mu} = (y^{\delta})_{\mu}$ and $(x^{\delta})_{\mu_{\delta}} = (x^{\delta})_{\mu_{\delta}}$. Since μ_{δ} is the identity on S^{δ} by (μ 1), so $x^{\delta} = y^{\delta}$, that is, $|V_{S^{\delta}}(x)| = 1$ for any $x \in S$ which shows S^{δ} is an inverse S^{δ} transversal of S^{δ} . Since S^{δ} is a po-semigroup, so S^{δ} is also an inverse S^{δ} po-transversal of S^{δ} and it is fundamental by (μ 1).

Corollary 1.5. Let S^{δ} be a po-subsemigroup of the ORB-(resp.POR-) semigroup S with the mapping δ is surjective from S to S^{δ} such that $x^{\delta} \in V_{S^{\delta}}(x)$ for $x \in S$, then the following statements are equivalent:

- (1) S^{δ} is a fundamental inverse ${}^{\delta}$ po-transversal of S;
- (2) The equivalence relation

$$\mu = \{(x, y) \in \mathcal{H} \mid x^{\delta} e x^{\delta \delta} = y^{\delta} e y^{\delta \delta} \text{ for any } e \in E(S^{\delta})\}$$

has the following properties:

- $(\mu 1)$ $\mu_{\delta} = \mu \cap (S^{\delta} \times S^{\delta})$ is the maximum idempotent-separating congruence on S^{δ} and μ_{δ} is the identity congruence on S^{δ} ;
 - $(\mu 2)$ μ is the smallest inverse semigroup congruence on S.

2. The existence of inverse $^{\delta}$ po-transversals for some classes of po-semigroups

In the proof of Theorem 1.2, we may see that the anti-homomorphism δ is very important. We think thus that if there exists an anti-homomorphism δ from some regular po-semigroup S to some po-subsemigroup S^{δ} of S then it is possible that S has an inverse ${}^{\delta}$ po-transversal. In fact, we may show that it is true for some po-semigroup.

Theorem 2.1. Let S be an order orthodox semigroup with the biggest inverses (for short, OOB-semigroup). Then S has the weakly multiplicative inverse $^{\delta}$ potransversal as following:

$$S^{\delta} = \{x^{\delta} \in V(x) \mid x^{\delta} = \hat{x}^{o} \in (x)^{-1}_{n} \text{ for any } x \in S\}$$

with the mapping δ is an anti-homomorphism from S to S^{δ} and the mapping $\delta\delta$ denoted by $x^{\delta\delta} = (x^{\delta})^{\delta} \in (x)_{\nu}$ for any $x \in S$ is a homomorphism from S to S^{δ} . Here,

$$\nu = \{(x, y) \in S \times S \mid V(x) = V(y) \text{ and } x^o = y^o\}$$

is the smallest inverse semigroup congruence on S where $a^o \in V(a)$ for any $a \in S$ and a^o is the biggest inverse of a.

Proof. Let S be an OOB-semigroup. We know that equivalence relation

$$\nu = \{(x, y) \in S \times S \mid V(x) = V(y)\}\$$

is the smallest inverse semigroup congruence on S by [6, VI.1 Theorem 1.12]. We denote the biggest inverse of x by x^o for $x \in S$. Let the equivalence relation

$$\tau = \{(x, y) \in S \times S \mid x^o = y^o\},\$$

then we have the following results. (α) $\nu = \tau \cap \nu$.

Let $(x,y) \in \tau$ and $z \in S$ then by S being orthodox we have $(zx)^o = x^oz^o = y^oz^o = (zy)^o$ so $(zx,zy) \in \tau$. Similarly $(xz,yz) \in \tau$, that is, τ is a congruence on S. Let $\xi = \tau \cap \nu$ then ξ is also a congruence on S. We denote the ξ -class (resp. ν -class) of containing x by $(x)_{\xi}$ (resp. $(x)_{\nu}$). Similar to Theorem 1.2, we may show that ξ is also an inverse semigroup congruence on S and $\xi \subseteq \nu$. By the smallest property of ν we have $\xi = \tau \cap \nu = \nu$.

$$(\beta) \ (\forall x \in S) \ (x)_{\nu}^{-1} = (x^{o})_{\nu}, \ (x)_{\nu} = (x^{oo})_{\nu}.$$

Since $(x)_{\nu}^{-1}$ is the unique of $(x)_{\nu}$ and clearly $(x)_{\nu}^{-1} = (x^{o})_{\nu}$ by $x^{o} \in V(x)$. If $(x)_{\nu}^{-1} = (x^{o})_{\nu} = (y^{o})_{\nu}$ then $x^{o} = y^{o}$ by (α) . By $(x)_{\nu}^{-1} = (x^{o})_{\nu}$ imply $(x)_{\nu} = ((x)_{\nu}^{-1})^{-1} = ((x^{o})_{\nu})^{-1} = (x^{oo})_{\nu}$ is also unique.

 (γ) $(\forall x \in S)$ If $y \in (x)_{\nu}$ then $y^{o} = x^{o}$ and $y^{oo} = x^{oo}$.

By (β) for $x \in S$, $x^{oo} \in (x)_{\nu}$, if $y \in (x)_{\nu}$ then $(x)_{\nu} = (y)_{\nu}$, by (α) $\nu = \tau \cap \nu$ so $x^{o} = y^{o}$ and imply $x^{oo} = y^{oo}$.

(δ) $S^{\delta} = \{x^{\delta} \mid x^{\delta} = x^{o} \in (x)_{\nu}^{-1}$, for any $x \in S\}$ is a po-semigroup with δ is an anti-homomorphism from S to S^{δ} and $\delta\delta$ is a homomorphism.

By (β) and (γ) for any $x \in S$ there is the inverse $x^o \in (x)_{\nu}^{-1}$. For the inverse $x^o \in (x)_{\nu}^{-1}$ we denote by $x^{\delta} = x^o \in (x)_{\nu}^{-1}$ then δ is a mapping from S onto S^{δ}

and $x^{\delta}y^{\delta} = (yx)^{\delta} \in (yx)^{-1}_{\nu}$, $x^{\delta\delta}y^{\delta\delta} = (xy)^{\delta\delta} \in (xy)_{\nu}$ by (β) . So we have that S^{δ} is a po-semigroup and statement (δ) holds.

 (ϵ) S^{δ} is an inverse ${}^{\delta}$ po-transversal of S.

Let the mapping $\phi: S^{\delta} \longrightarrow S/\nu$ denoted by $x^{\delta} \longmapsto (x)_{\nu}$, that is, $x^{\delta}\phi = (x)_{\nu}$. If $(x)_{\nu} = (y)_{\nu}$ then $x^{\delta} = y^{\delta}$ and for any $(x)_{\nu} \in S/\nu$ there is $x^{\delta} \in (x)_{\nu}$ such that $x^{\delta}\phi = (x)_{\nu}$. Let $x^{\delta}, y^{\delta} \in S^{\delta}$ then $(x^{\delta}y^{\delta})\phi = (yx)^{\delta}\phi = (yx)_{\nu} = (y)_{\nu} \cdot (x)_{\nu} = y^{\delta}\phi \cdot x^{\delta}\phi$. Thus we know that ϕ is an anti-isomorphism from S^{δ} to S/ν . So S^{δ} is also an inverse po-semigroup by S/ν being inverse. Clearly, x^{δ} is the unique element in $V_{S^{\delta}}(x)$, so S^{δ} is an inverse $^{\delta}$ po-transversal of S. By lemma 1.1(7), S^{δ} is weakly multiplicative.

Since the principally ordered orthodox semigroups (for short, POO-semigroups) are OOB-semigroups, we have

Corollary 2.2. Let S be an POO-semigroup. Then S has the weakly multiplicative inverse $^{\delta}$ po-transversal

$$S^{\delta} = \{ x^{\delta} \in V(x) \mid x^{\delta} = x^{\delta} \in (x)^{-1} \text{ for any } x \in S \}$$

with the mapping δ is an anti-homomorphism from S to S^{δ} and the mapping $\delta\delta$ denoted by $x^{\delta\delta} = (x^{\delta})^{\delta} \in (x)_{\nu}$ for $x \in S$ is a homomorphism from S to S^{δ} . Here,

$$\nu = \{(x, y) \in S \times S \mid V(x) = V(y) \text{ and } x^o = y^o\}$$

is the smallest inverse semigroup congruence on S where x^o as above for $x \in S$.

It is well known that for OOB-semigroup S. S^o isn't necessarily an inverse o transversal of S. Theorem 2.1 and Corollary 2.2 solved the existence problems of inverse $^\delta$ po-transversals of OOB-semigroups and POO-semigroups.

Here we list the following basic facts on ORB-semigroups, which will be used in following theorems, the reader can consult [1]-[3] for more details.

Lemma 2.3. Let S be a ORB-semigroup and $S^o = \{x^o \mid \forall x \in S\}$ then we have

- (1) $(\forall e \in E(S))$ $e \leq e^o \leq (e^o)^2$, $e = ee^o e^{oo} e = ee^{oo} e^o e$, $e^{oo} \in V(e) \cap E(S)$ and $e^o \in E(S) \Leftrightarrow e^o = e^{oo}$;
 - (2) $(\forall x \in S) \ x \le x^{oo}, x^o = x^{ooo} \ and \ (xx^o)^o = x^{oo}x^o, (x^ox)^o = x^ox^{oo};$
- (3) $(\forall x, y \in S)$ $x \mathcal{R} y$ if and only if $xx^o = yy^o$; $x \mathcal{L} y$ if and only if $x^o x = y^o y$ and $x^o x$ (resp. xx^o) is the biggest idempotent in $(x)_{\mathcal{L}}$ (resp. $(x)_{\mathcal{R}}$)
 - (4) if \mathcal{R} and \mathcal{L} are weakly regular (see [1]) then
 - $(\alpha) \ (\forall e \in E(S)) \ e^o = e^{oo} \in E(S);$
 - $(\beta) \ (\forall x \in S) \ V(x) \cap S^o = \{x^o\};$
- (ν) if S^o is a po-subsemigroup of S then S^0 is an inverse o po-transversal of S.

Lemma 2.4. Let S be ORB-semigroup on which $\mathcal R$ and $\mathcal L$ are strongly regular then

$$(\forall x, y \in S)(xy)^o = (x^o xy)^o x^o = y^o (xyy^o)^o.$$

Proof. Let $x, y \in S$ then $xy \mathcal{L} x^o xy$ so that $(xy)^o xy = (x^o xy)^o \cdot x^o xy$ by Lemma 2.3 (3). Since $(xy)(xy)^o \mathcal{R} xy(x^o xy)^o x^o$. Similarly,

$$xy(xy)^o = xy(xy)^o(xy(xy)^o)^o = xy(x^oxy)^ox^o(xy \cdot (x^oxy)^ox^o)^o.$$

Since $xx^o, xy(x^oxy)^ox^o \in E(S)$ and

$$xy(x^oxy)^ox^o = xx^oxy(x^oxy)^ox^o = xy(x^oxy)^ox^oxx^o$$

so that $xy(x^oxy)^o \cdot x^o \leq_n xx^o$. By \mathcal{R} and \mathcal{L} being strongly regular we have $xy(xy)^o = xy(x^oxy)^o x^o (xy(x^oxy)^o x^o)^o \leq xx^o (xx^o)^o = xx^o$. Thus $x^oxy(xy)^o \leq x^o$. Since $(x^oxy)^o x^o \in V(xy)$, so $(x^oxy)^o x^o \leq (xy)^o$. Then we have

$$xy(xy)^o = xy(x^oxy)^ox^oxy(xy)^o \leq xy(x^oxy)^0x^0 \leq xy(xy)^o.$$

Consequently,

$$xy(xy)^o = xy(x^o xy)^o x^o$$

so that

$$(xy)^o = (xy)^o xy(xy)^o = (xy)^o xy(x^o xy)^o x^o = (x^o xy)^o x^o xy \cdot (x^o xy)^o x^o$$

= $(x^o xy)^o x^o$.

Similarly, we have $(xy)^o = y^o(xyy^o)^o$.

Now we may prove the following theorem. This theorem will solve the existence of multiplicative inverse $^{\delta}$ po-transversals for the ORB- and POR-semigroups on which \mathcal{R} and \mathcal{L} are strongly regular.

Theorem 2.5. Let S be an ORB-semigroup on which \mathcal{R} and \mathcal{L} are strongly regular then S^o is necessarily a multiplicative inverse opo-transversal of S.

Proof. We show first that S^o is a quasi-ideal of S and so that S^o is a posubsemigroup of S since S is regular. Let $a,b \in S^0, x \in S$ and y = axb then $a = a^{oo}$ and $b = b^{oo}$ by Lemma 2.3 (2). By Lemma 2.4 we have $yy^o = yy^oaa^o = aa^oyy^o$ so that $yy^o \leq_n aa^o$. Similarly, $y^oy \leq_n b^ob$. By \mathcal{R} and \mathcal{L} being strongly regular and Lemma 2.3 (2) we obtain $(yy^o)^oyy^o = y^{oo}y^oyy^o = y^{oo}y^oyy^o = aa^oaxb = axb = y = yy^oy \leq y^{oo}y^oy^oy$ by Lemma 2.3 (2). Consequently, $y = y^{oo}y^oy^oy$ and similarly $y = yy^oy^oy^o$. Thus we obtain $y = yy^oy = y^{oo}y^oyy^oy = y^{oo}y^oyy^oy = y^{oo}y^oyy^oy^oy = y^{oo}y^oyy^oy^oy^oy = y^{oo}y^oyy^oy^oy = y^{oo}y^oyy^oy^oy^oy$

Now we know immediately that S^o is an inverse o po-transversal of S with the mapping o is surjective from S to S^o by lemma $2.3(4)(\nu)$. We may prove that S^o is multiplicative. In fact, by lemma 2.3 (4)(α) $e^o \in E(S)$ for any $e \in E(S)$, then by lemma 1.1(6) and upper result we have that S^o is multiplicative. \square

Corollary 2.6. Let S be a POR-semigroup on which \mathcal{R} and \mathcal{L} are strongly regular then $S^o = \{x^o \in V(x) \mid x^o = x^*xx^* \text{ for any } x \in S\}$ is necessarily a multiplicative inverse ${}^o po$ -transversal of S.

3. The structures of ORB- and POR-semigroups

By the results in Section 2, on the understanding that \mathcal{R} and \mathcal{L} are strongly regular, the following structure theorem is may obtained by Blyth and McFadden in [4].

Theorem 3.1. Let S be a ORB-semigroup on which \mathcal{R} and \mathcal{L} are strongly regular. Let $S^o = \{x^o | \forall x \in S\}$, $I = \{xx^o | \forall x \in S\}$ and $\wedge = \{x^o x | \forall x \in S\}$, then S is ordering o-isomorphic to W (i.e. $x^o \phi = (x\phi)^o$ for $x \in S$ and the ordering isomorphism ϕ) as following.

$$W = \{(e, a, f) \in I \times S^0 \times \Lambda \mid e^0 = aa^{-1}, f^0 = a^{-1}a\}$$

with the Cartesian order

$$(e, a, f) \preceq (g, b, h) \Longleftrightarrow e \leq g, a \leq b, f \leq h$$

where multiplicative in W is defined by

$$(e, a, f)(q, b, h) = (eafqa^{-1}, afqb, b^{-1}fqbh).$$

Proof. We need only to prove that S is ordering ⁰-isomorphic to W. The rests are obtained by Blyth and McFadden in [4]. Let the mapping

$$\phi: S \longrightarrow W, \ x\phi = (xx^0, x^{00}, x^0x) = (e_x, x^{00}, f_x)$$

where $e_x = xx^0$ and $f_x = x^0x$ for any $x \in S$, then ϕ is an algebraic isomorphism by [4]. It's inverse ϕ^{-1} is given by $(e, a, f)\phi^{-1} = eaf$ for each $(e, a, f) \in W$. To show that ϕ is isotone, suppose that $x \leq y$ in S then

$$\begin{array}{cccc} x \leq y & \Longrightarrow & x^0x \leq y^0y & \text{(by \mathcal{L} is regular)} \\ & \Longrightarrow & (x^0x)(x^0x)^0 \leq (y^0y)(y^0y)^0 & \text{(by \mathcal{R} is regular)} \\ & \Longrightarrow & x^0x^{00} \leq y^0y^{00} & \text{(by lemma 1.1(1) and (2))}. \end{array}$$

Similarly, $xx^0 \leq yy^0$ and $x^{00}x^0 \leq y^{00}y^0$, therefore $x^{00} = x^{00}x^0xx^0x^{00} \leq y^{00}y^0yy^0y^{00} = y^{00}$. We conclude that $(e_x, x^{00}, f_x) = x\phi \leq y\phi = (e_y, y^{00}, f_y)$, that is, ϕ is isotone and is therefore an isomorphism of po-semigroups.

By [4] we know $(x\phi)^0 = (e_x, x^{00}, f_x)^0 = (e_{x^0}, x^0, f_{x^0})$. By Lemma 1.1 (1) and (2) we compute that $x^0\phi = (e_{x^0}, x^0, f_{x^0})$ so imply $x^0\phi = (x\phi)^0$.

The following result is a generalization of Theorem 2.6 in [7].

Corollary 3.2. Let S be a ORB-semigroup on which the order \leq is natural. If \mathcal{R} and \mathcal{L} are regular then $S^o = \{x^o \in V(x) \mid \forall x \in S\}$ is a multiplicative inverse o po-transversal of S and S is ordering o -isomorphic to W as above.

Proof. We need only to notice that when the order \leq is natural then \mathcal{R} and \mathcal{L} are regular if and only if \mathcal{R} and \mathcal{L} are strongly regular. Thus we immediately obtain that the result holds by Theorem 3.1.

For the POR-semigroups we have the following results.

Theorem 3.3. Let S be a POR-semigroup on which \mathcal{R} and \mathcal{L} are strongly regular then

- (1) S has the multiplicative inverse ${}^{0}po$ -transversal $S^{0} = \{x^{0} \in V(x) \mid \forall x \in S\}$ with the mapping o is surjective from S to S^{0} ;
 - (2) As an ORB-semigroup then S is ordering o-isomorphic to W as above;
- (3) Let ϕ is an ordering o -isomorphism from S to W, then W can be principally ordered such that W becomes a POR-semigroup and ϕ becomes an ordering *-isomorphism from S to POR-semigroup W.

Proof. By Theorem 3.1 the statement (1) and (2) hold. We need only to show the statement (3). Since ϕ is an ordering isomorphism, then ϕ^{-1} is also and

$$xyx \le x \iff (xyx)\phi \le x\phi(\forall x, y \in S).$$

Since for each $x \in S$ there exists $x^* = \max\{y \in S | xyx \leq x\}$. So for each $(e_x, x^{oo}, f_x) \in W$ there also exists

$$\begin{array}{lcl} (e_x, x^{oo}, f_x)^* & = & \max\{(e_y, y^{oo}, f_y) \in W | (e_x, x^{oo}, f_x)(e_y, y^{oo}, f_y)(e_x, x^{00}, f_x) \\ & = & (e_{xyx}, (xyx)^{00}, f_{xyx}) \preceq (e_x, x^{00}, f_x) \}. \end{array}$$

In fact, by Lemma in [2] we compute that $(e_x, x^{00}, f_x)^* = (e_{x^*}, (x^*)^{00}, f_{x^*})$ and $(e_x, x^{00}, f_x)^0 = (e_{x^0}, (x^0)^{00}, f_{x^o})$. Therefore we know that W can be principally ordered by the ordering isomorphism ϕ . In such a way, if $x \in S, x\phi = (e_x, x^{00}, f_x)$ then clearly $(x\phi)^* = (e_x, x^{00}, f_x)^* = (e_{x^*}, (x^*)^{00}, f_{x^*})$ and $x^*\phi = (e_{x^*}, (x^*)^{00}, f_{x^*})$, that is, $x^*\phi = (x\phi)^*$.

In closing this note, we point that the POR-semigroup M in Example 1 has multiplicative inverse 0 po-transversal

$$M^0 = \{ [x, y, p_k + k - 1] \in M \mid (x, y) \in L^{[2]}, p \in Z \}.$$

In fact, $E(M^0) = \{[x, y, k-1] \mid (x, y) \in L^{[2]}\}$ is a semilattice and M^0 is an quasi-ideal of M. The proof here is omitted.

References

- [1] T. S. Blyth and G. A. Pinto, On idempotent-generated subsemigroups of principally ordered regular semigroups, Semigroup Forum 65 (2003), 1–12.
- [2] ______, Idempotents in principally ordered regular semigroups, Communications in Algebra 19 (1991), 1549–1563.
- [3] _____, On ordered regular semigroup with biggest inverses, Semigroup Forum **54** (1997), 154–165
- [4] T. S. Blyth and R. McFadden, Regular semigroups with a multiplicative inverse transversal, Proc. Rog. Soc. Edinburgh 92A (1982), 253–270.
- [5] Z. Gao, Naturally ordered abundant semigroups with adequate transversals, PU. M. A 14 (2003), no. 1-2, 35-50.
- [6] J. M. Howie, An Introduction to Semigroups Theory, Academic Press. London, 1976.
- [7] S. Tatsuhiko, Naturally ordered regular semigroups with maximum inverses, Roc. Edinburgh Math. Sec. 32 (1989), 33–39.

ZHENLIN GAO

SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY

Shanghai 200093, China

 $E ext{-}mail\ address: zlgao@sina.com}$

Guijie Zhang

SCIENCE COLLEGE OF UNIVERSITY OF SHANGHAI FOR SCIENCE AND TECHNOLOGY

Shanghai 200093, China

 $E\text{-}mail\ address{:}\ \mathtt{dreamerzgj@163.com}$