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ON THE PUBLIC KEY CRYPTOSYSTEMS
OVER CLASS SEMIGROUPS OF IMAGINARY
QUADRATIC NON-MAXIMAL ORDERS

YONGTAE KiM AND CHANG HAN KIM

ABSTRACT. In this paper we will propose the methods for find-
ing the non-invertible ideals corresponding to non-primitive qua-
dratic forms and clarify the structures of class semigroups of imagi-
nary quadratic orders which were given by Zanardo and Zannier
[8], and we will give a general algorithm for calculating power
of ideals/classes via the Dirichlet composition of quadratic forms
which is applicable to cryptography in the class semigroup of imag-
inary quadratic non-maximal order and revisit the cryptosystem of
Kim and Moon {5] using a Zanardo and Zannier [8]’s quantity as
their secret key, in order to analyze Jacobson [7]'s revised cryp-
tosystem based on the class semigroup which is an alternative of
Kim and Moon [5]’s.

1. Introduction

Gauss [4] classified the quadratic forms with rational coefficients using
theory of composition without mentioning the relation between ideals
and forms. Cox [2] proved that there is an isomorphism between the form
class group and the ideal class group of the non-maximal order using the
Dirichlet composition of quadratic forms. He, however, didn’t explain
the class semigroup of non-maximal order. Zanardo and Zannier [8]
have given the structure of the class semigroup of non-maximal order as
finitely disjoint union of groups with some quantities which was discussed
by Kim [6] and Jacobson [7] on the quantities. Buchmann [1] proposed
a public key cryptosystem making use of ideals of the maximal orders in
quadratic fields which may pave the way for a public key cryptosystem
using imaginary quadratic non-invertible ideals as generators.
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In this paper we discuss the methods for finding non-invertible ideals
corresponding to non-primitive quadratic forms, and we will constitute
the explicit formulas calculating power of ideals/classes in the class
semigroup of imaginary quadratic non-maximal order. Chapter 2 con-
tains some preliminaries necessary to this paper. Chapter 3 consists
of a lemma concerning the methods for constructing invertible or non-
invertible ideals and a corollary to the lemma involving the contents for
certain type of idempotent class in the class semigroup. In particular,
we will give a theorem for clarifying the structures of class semigroup. In
chapter 4, we establish the explicit formulas for powering ideals/classes
via the Dirichlet composition which are applicable to cryptography (e.g.
Diffie-Hellman cryptosystem [3]) in imaginary quadratic non-maximal
order. We will revisit the cryptosystem of Kim and Moon [5] and an-
alyze Jacobson [7]’s revised cryptosystem based on class semigroups in
chapter 5.

2. Preliminaries

In this chapter, we introduce some facts concerning class semigroup
in imaginary quadratic field. Throughout this paper, most of the ter-
minologies are due to Gauss [4] and notations and some preliminaries
are due to Cox [2] and Zanardo and Zannier [8] and the notations O,
Z and Q denote the imaginary quadratic non-maximal order, the ring
of integers and the field of rational numbers respectively. Let D; < 0
be a square free rational integer and set D = 4D;/r?, where r = 2 if
Dy =1mod4 and 7 = 1if D; = 2,3 mod 4. Then K = Q(v/D)) is an
imaginary quadratic field of discriminant D. Note that K = Q(v/D).
If a,8 € K, we denote by [a, (] the set «Z + 8Z. Then an order
in K having conductor f with discriminant Dy = f2D is denoted by
O = [1, fw], where w = (D + +/D)/2. An (integral) ideal A of O is a
subset of O such that o+ 3 € A and a\ € A whenever o, 5 € A, X € O.
For @ € K,o/,N(a) and Tr(a) denote the complex conjugate, norm
and trace of o respectively. Let v = fw. Then any ideal A of O (any
O-ideal) is given by A = [a,b + ¢y], where a,b,c € Z, a > 0,¢ > 0,
¢|ac|band ac| N(b+cy). If ¢ = 1, then A is called primitive,
which means that A has no rational integer factors other than 1. Then
A = [a,b+ 7] is O-ideal if and only if a divides N(b+ ). We say that
A and B are equivalent ideals of O and denote A ~ B if there exist
non-zero «, 3 € K such that (a)A = (8)B (this relation actually is
equivalent relation). We denote the equivalence class of an ideal A by
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A. Let I(O) be the set of non-zero fractional ideals of O and P(O) the
set of non-zero principal ideals of O. Then Cls(O) = I(0)/P(0) will
be the class semigroup of the order O.

3. Structure of Cls(O)

In this chapter we discuss some generalizations of the facts, discussed
by Gauss [4] and Cox [2], for quadratic forms, orders and ideals. For
convenience, we will set the positive definite quadratic form u(z,y) =
az? + bry + cy? as (a,b,c) for brevity, and call 7 the root of u(z,y)
if u(n,1) = 0 and 7 lies in the upper half plane H. We begin with
introducing a lemma due to Cox [2].

LEMMA 3.1. (Confer [2, Proposition 7.4]) Let O be an order in a
imaginary quadratic field K, and let A be a fractional O-ideal. Then

{BeK|BACA}=0
if and only if A is invertible.

We now generalize Theorem 7.7 in [2] in order to apply quadratic
non-invertible ideals to some cryptography.

LEMMA 3.2. Let u(z,y) = (a,b,c) be a positive definite quadratic
form with discriminant Dy, where k = gcd(a, b, ¢). Let n be the root of
u(z,y). Then the ideal [a,an] is invertible ideal if k = 1 and is non-
invertible if k > 1 in the order O = [1,v] of K.

PROOF. Firstly, we note that [1,an] is an order of K, since a7 is
an algebraic integer. Now, we can show whether [a, an] is a invertible
ideal or not in [1,an] according to & = 1 or not. For a given # € K,
Bla,an] C [a,an] is equivalent to Sa € [a,an] and B(an) € [a,an]. Since
a3 belongs to [a, an], we then have aff = ma+n(an), thatis , 8 = m+nn
for some rational integers m and n.

Conversely, for any rational integers m and n, a(m + nn) clearly
belongs to [a, an]. For the second, note that

B(an) = man + nan? = man + n(=by — ¢) = —nc + (ma — nb)7.

Thus, B(an) € [a,an] if and only if a | nc and a | nb and m is
arbitrary. If kK = 1, then a | n. However if & > 1, then ged(a,b) and
ged(a, ¢) > k. There thus exist an non-trivial divisor s of a and arbitrary
rational integer m such that an(m + sn) € [a, an]. These facts tell us,

{6 € K | Bla,an] C [a,an]} = [1, an]
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if and only if k£ = 1. Therefore [a, an] is invertible in [1,an] if k = 1 and
non-invertible if £ > 1 by Lemma 3.1. Since f is the conductor of O
with discriminant Dy, an = —(b+ fD)/2+~. Since fD and b have the
same parity, we have (b+ fD)/2 € Z. It follows that [1,an] = [1,~] and
thus [a,an] = [a,—(b+ fD)/2 4+ ~] is an O-ideal. O

In particular, if @ = k, then we denote the ideal [k, kn] by Ej. For
a quadratic form u(z,y) = (a, b, ¢), we define ged(u(z,y)) = ged(a, b, ¢),
ui(z,y) = 1/ ged(u(z, y))u(z,y), ged(X) = ged(a, Tr(b+7), N(b+7)/a)
and Tr(b++)% —4N(b++), the discriminant of I, for a non-zero O-ideal
I={a,b+7]

COROLLARY 3.3. For any divisor k | f, we have Ey = [k,7].

Proor. Let u(z,y) = (k, kb1, ker) with discriminant Dy , where f =
kd. Then kn — v € kZ since by and dD are same parity. Therefore
[k, kn] = [k, 7. O

To clarify the structure of Cls(O), we need the following two Lemmas.

LEMMA 3.4. ([8, Theorem 10]) Let I = [a, b+7] be a non-zero O-ideal
and gcd(I) = k. Then we have E? = kEy, II' = aEy, IEy, = k1.

LEMMA 3.5. Suppose I and J are O-ideals with same discriminant
Dy such that ged(!) = ki, ged(J) = ko. Then ged(1J) = lem(ky, k2).

PrOOF. Suppose that u(z,y) and v(x,y) be positive definite qua-
dratic forms with discriminant Dy corresponding to I and J respec-
tively. Let u(z,y) = kjui(z,y) and v(z,y) = kovi(x,y), where k; =
ged(u(z,y)) and k2 = ged(v(z,y)). Then if f = kyd; = kody by
Lemma 3.4, then u;(x,y) and vy(z,y) are primitive with discriminant
diD and d3D respectively. From Gauss[4, art.236], the direct compo-
sition U1 (z,y) of ui(z,y) and vi(z,y) has the discriminant d2D, where
d = gcd(dy,dy). Then from elementary number theory f = kd, where
k = lem(ky, k2). Therefore if we denote U(z,y) the direct composi-
tion of u(z,y) and v(z,y), then ged(U(x,y)) = k. This completes the
proof. O

Here we need to prove an important property of ged([).

LEMMA 3.6. (See also [8, Proposition 13]). If I = [a,b+ 7] is a
non-zero primitive O-ideal, then ged(I) divides f.

PRrOOF. Let k = ged([I) for brevity. Since I is an primitive -ideal, a
divides N(b++), and thus k divides a and k? | N(b+~) and k|Tr(b+7).
If we choose an element § = 1/k(b++) € K, then Tr(0) = 1/kTr(b++)
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and N(#) = 1/k?N(b + v), which are both rational integers, since k? |
N(b++~) and k | Tr(b+~). Therefore 6 is an algebraic integer and thus
is contained in the maximal order [1,w]. Consequently k divides both b
and f. O

For the structure of Cls(O), Michael [7] proposed [7, Proposition 2.3]
instead of [8, Proposition 14]. [7, Proposition 2.3] is right, however,
the proof is somewhat ambiguous. Because, [8, Proposition 14| says
only that G,Gs contained in Gs,where § = lem(a, 8)(Corollary 3.5 of
this paper is equivalent to that). So, we will need a necessary and
sufficient condition for clarifying the group Gs. It is well-known that
the cardinality of Cls(O) is finite. Thus we have the following.

THEOREM 3.7. The class semigroup Cls(O) = Uy yGg, where G
is the set of all classes containing O-ideals A’s such that gcd(A) = k.

PROOF. From Lemma 3.4, we have Cls(O) is a commutative Clifford
semigroup. Equivalently Cls(O) is a finitely disjoint union of groups
of the form G.’s, where e is an idempotent element of Cls(O), and
there exists a homomorphism between groups. It is well-known that
Gg; = {A | AEx = A and AB = Ey, for some B € Cls(O)} since
Cls(0) is the Clifford algebra. We claim that Gy is the set of all
classes containing O-ideal A’s such that gcd(A) = k. In fact; For any
O-ideal A, gcd(A) divides f by Lemma 3.6. Suppose that ged(A) = &,
then A € GE—k— by Lemma 3.4. Conversely suppose that B € Ge: with
gcd(B) = h. Then BB’ = Ej, by Lemma 3.4. Note that gcd(A) =
ged(A’). Therefore ged(AA') = ged(A) by Lemma 3.5. Consequently
h = gcd(B) = ged(BB') = ged(Ey) = k. This completes the proof O

In Kim [6, Remark 3.9(a}], we can find an explicit counterexample for
[8, Proposition 12]. Combining Lemma 3.5 and Theorem 3.7, we have
the following,.

COROLLARY 3.8. If two ideal classes A and B belong to Gg, and
Gy, respectively, then AB belongs to Gg,, where I = lem(k, h).

4. Powering ideals/classes via the Dirichlet composition

In this chapter, we will calculate power of an ideal via the Dirichlet
decomposition which is applicable to public key cryptosystems directly.
From Gauss’ work [4], we notice that if two primitive quadratic forms
u(z,y) and v(z,y) are positive definite with discriminant D¢, then their
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Dirichlet composition U(z, y) will be positive definite of discriminant Dy
and moreover, U(z, y) is the direct composition(in the sense of Gauss) of
u(z,y) and v(x,y) of discriminant Dy. We now give an efficient method
for powering an ideal/class in O, which is the generalization of Cox [2,
Theorem 7.7].

THEOREM 4.1. Let u(z,y) = (a,b,c) = (kay, kb1, kc1) be a posi-
tive definite quadratic form with k = ged(u(z,y)), discriminant Dy
and ged(ay, b)) = 1. Let I be an O-ideal corresponding to u(z,y).
Then, for any natural number x, we have I* = k”‘l[ka“f,u], where
p = (—kW + f1/D)/2 for a unique rational integer W modulo 2a§ and

the ideal class containing I* is [kaf, ).

PRrROOF. Note that I € GE—k and thus I” € GE—k by Corollary 3.8 and
the Dirichlet composition of a primitive quadratic form is primitive with
the same discriminant as the quadratic form. Let’s denote UFt!(z,y)
the Dirichlet composition of uj(x,y) with itself z times for any natural
number z and U*(z,y) = kU{(z,y). We will prove the theorem using
mathematical induction on the exponent x. Let ui(z,y) = (a1,b1,¢1)
and f = kd, since k | f by Lemma 3.6. Then uy(z,y) is primitive with
discriminant d?2D. Therefore we can calculate the Dirichlet composition
of ui(x,y) with itself. In fact, we can find the unique rational integer
T modulo 2a? satisfying the following system of congruences (confer [2,
Lemma 3.2])

T = b; mod 2a;

1
1) T? = d?D mod 4a3,

since ged(ay, b1) = 1. Then UZ(z,y) = (a?,T,C) and U?(z,y) = (ka?,
kT, kC), where C = (T? — d*D)/4a? and ged(ay, (by + T)/2) = 1 since
ged(ag,b1) = 1. Note that the discriminants of UZ(z,y) and U?(z,y)
are d?D and Dy respectively. Multiplying each congruence of (1) by k
or k?, we obtain the following

kT = bmod 2a

2
2) B2T? = Dy mod 4q2.

Let 71 and 72 be the roots of u;(z,y) and UZ(x,y) respectively. Then
the ideals corresponding to ui(z,y) and UZ(z,y) are [a1,a171] and [a?, 7]
respectively, where 7 = afry, by Lemma 3.2. Note that [a1,a171]? =
[a2,7] (confer [2,Theorem 7.7]). Similarly, the ideals corresponding to
u(z,y) and U?(z,y) are [a, a71] and [ka?, k7] respectively by Lemma 3.2.
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Simple calculation shows that [a, am1] = [a, k7] and (k7)? = —k*T'T mod
a’ by the system of congruences (2). Thus

[o,am1)? = [a, k7)? = [a%, akT, —K*T'7] = [a?, k*7] = k[ka?, k7],

since ged(ay,T) = 1. Let S modulo 2a3 be the unique rational integer
satisfying the following system of congruences

S = b1 mod 2a1
(3) S = T mod 242
5? = d?D mod 4a3.

Then Ud(z,y) = (a3,5,C) and U3(z,y) = (ka}, kS, kC) with dis-
criminant d?D and Dy respectively, where C = (S? — d?D)/4a? and
ged(ay, (by + 8)/2) = 1. Let 1 be the root of Ud(x,y) and u = adp.
Then the corresponding ideal to U3(z,y) is [a3, u]. Therefore

la,ar1]® = [a, an][a, am)? = Klay, pllad, 4] = K*[ka, ku).

Inductively U (x,y) = (a¥, W, C) with discriminant d?D and U®(z,y) =
(ka¥, kW, kC) with discriminant Dy, where C = (W2 — d?D)/4a% and
ged(a, (b + W)/2) = 1 and W is uniquely determined by the system
of congruences similar to (3). If we set 6 the root of Uf(z,y), then we
can obtain [a,at]* = k[ka], kaT6] by the same procedure above. This
completes the proof. O

Slight modification of [2, Theorem 2.8] tells us that every positive def-
inite form is properly equivalent to the unique reduced form, and thus
every (O-ideal can be transformed to a unique reduced O-ideal of the
form I = [a,b+ 7]. From these facts, commutativity, associativity of
Dirichlet composition(see also [4, art. 240, 241]) and Theorem 3.6, we
have the following.

COROLLARY 4.2. Suppose that u(z,y) is the quadratic form as de-
fined in Theorem 4.1. Then (u(z,y) )¥ = (u(z,y)’)* and thus (I")Y¥ =
(T%)* for any O-ideal I.

The facts above can be applicable to public key crpytosystems based
on the quadratic non-maximal order by choosing non-invertible ideals
as generators.
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5. Analyses of some public key cryptosystems

In this chapter, we discuss some facts concerning the secret key chosen
by Kim and Moon [5, p.492] and the analysis of Kim and Moon [5]’s
cryptosystem proposed by Michael [7].

(a) Analysis of Kim and Moon’s key-exchange system by
Kim [6]

In [6, Lemma 3.9(b)], Kim [6] attacks Kim and Moon [5]’s cryptosys-
tem as follows.

The class I of the generator I in Kim and Moon’s system belongs
to G- for some divisor k of f(confer Theorem 3.7). Then ged(/) = k.
However any power of I is equivalent to a unique reduced ideal 7" with
the same ged(T') = k since T belongs to G by Corollary 3.8. Therefore
their cryptosystem can be broken trivially since they use their secret key
as ged(I).

(b) Analysis of Jacobson [7]’s revised cryptosystem

To analyze the revised cryptosystem, we introduce the following the-
orem due to Zanardo and Zannier [8].

THEOREM 5.1. (Confer [8, Theorem 16]) Let Ey, = [k, ], where k | f,
and let I be an O-ideal such that T € GE—k. Then JE; = kI for some
invertible ideal J.

In [7], Jacobson analyze Kim and Moon [5)’s cryptosystem by find-
ing out the same misconceptions as Kim [6]’s, and propose the revised
cryptosystem as follows(confer [7, chapter 4]).

1. Revised cryptosystem

Given ideals I, I with I,15 € GE , find € Z such that I2 ~ I7.

To find preimages of I; and I, under ¢ - invertible ideals J; and
Jo such that ¢x(J1) = I; and ¢5(J2) = T2. If there exists y € Z such
that J; ~ JY in GET’ then because ¢y is a homomorphism I; = I3, i.e.,
y is also a solution of the discrete logarithm problem in G—E—k. Theorem
16 of [8] describes an algorithm for computing the required preimages
given only a representative of an ideal class in GEZ and k. In general,
| Gg, |<| Cl(Dy) | means that the preimages J1 and .Jp are not unique.
It is thus possible that J; does not have a discrete logarithm with respect
to J2. The procedure for computing preimages by changing under ¢, can
be randomized by changing the representative of the ideal equivalence
class. If the first chosen preimages does not yield discrete logarithm, the .
process is simply repeated until it is found. Therefore computing discrete
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logarithm in Cls(O) is no harder than computing discrete logarithm in
Cl(0).

2. Analysis

The algorithm in Theorem 5.1, however, ensures the only one preim-
age under the algorithm of a representative ideal, and this is seriously
different from the facts claimed by Jacobson [7]. In fact, Zanardo and
Zannier (8] prove the theorem only to claim the surjectivity of a homo-
morphism. So, the algorithm of Theorem 5.1 can calculate a particular
preimage in Gg, of a given ideal in GEk’ that is, it can not find all the
preimages of a given representative ideal. Thus the preimages under this
algorithm of the other representative ideal can fall into the same class of
preimages of a given representative. On the other hand, the “preimages
of ¢” mentioned by Jacobson means the whole set of preimages of ¢y.
This is the difference between the algorithm of Theorem 5.1 and ¢y. If
we, therefore, want to find the whole preimages under ¢, of a represen-
tative ideal, then we have to test all the ideals in Ker(¢y) in the worst
case. Since the class number of the order Dy is generally larger that of
the order D1, the size of Ker(¢y) may not be sufficiently small. In other
word, there is no known efficient algorithm for finding all the preimages
under ¢y, of a given representative ideal using Theorem 5.1. So, his claim
on the comparison of securities between Cls(O) and CI(O) will not be
correct.
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