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SEMIGROUPS OF TRANSFORMATIONS

WITH INVARIANT SET

Preeyanuch Honyam and Jintana Sanwong

Abstract. Let T (X) denote the semigroup (under composition) of trans-

formations from X into itself. For a fixed nonempty subset Y of X, let

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y }.
Then S(X,Y ) is a semigroup of total transformations of X which leave

a subset Y of X invariant. In this paper, we characterize when S(X,Y )
is isomorphic to T (Z) for some set Z and prove that every semigroup A
can be embedded in S(A1, A). Then we describe Green’s relations for
S(X,Y ) and apply these results to obtain its group H-classes and ideals.

1. Introduction

The full transformation semigroup T (X) is extremely important and the
Green’s relations play an essential role in semigroup theory. As far back in
1952, Malcev [5] determined ideals of T (X), later in 1955 Miller and Doss [2]
described its Green’s relations and group H-classes. This paper is devoted to
generalizations of these results.

The semigroup we consider is S(X,Y ) consists of all mappings in T (X)
which leave Y ⊆ X invariant. To the extent that S(X,X) = T (X), we may
regard S(X,Y ) as a generalization of T (X).

Magill [4] introduced and studied the semigroup S(X,Y ) in 1966. Later in
1975, Symons [7] described the automorphism group of this semigroup. In 2005
Nenthein, Youngkhong, and Kemprasit [6] showed that S(X,Y ) is a regular
semigroup if and only if X = Y or Y contains exactly one element, and E =
{α ∈ S(X,Y ) : Xα ∩ Y = Y α} is the set of all regular elements of S(X,Y ).
Here, in Section 2, we prove that: S(X,Y ) is isomorphic to T (Z) if and only
if X = Y and |Y | = |Z|, and we also prove that every semigroup A can
be embedded in S(A1, A). In Section 3, we characterize Green’s relations on
S(X,Y ) and find that D = J if and only ifX is a finite set orX = Y or |Y | = 1,
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and we also show that its group H-class is isomorphic to a certain subgroup of a
permutation group. In Section 4, we describe ideals of the semigroup S(X,Y ).

Throughout the paper, the set X we consider can be finite or infinite. The
cardinality of a set A is denoted by |A| and X = A∪̇B means X is a disjoint
union of A and B. Also, we write functions on the right; in particular, this
means that for a composition αβ, α is applied first.

2. Isomorphisms and embeddings

Let X be any set and Y a fixed nonempty subset of X. We consider the
subsemigroup of T (X) defined by

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y },

where Y α denotes the range of Y under α. Note that idX , the identity map
on X, belongs to S(X,Y ) and

E = {α ∈ S(X,Y ) : Xα ∩ Y = Y α}

is the set of all regular elements of S(X,Y ).

As in Clifford and Preston [1] vol 2, p. 241, we shall use the notation

α =

(
Xi

ai

)
to mean that α ∈ T (X) and take as understood that the subscript i belongs
to some (unmentioned) index set I, the abbreviation {ai} denotes {ai : i ∈ I},
and that Xα = {ai} and aiα

−1 = Xi.

With the above notation, for any α ∈ S(X,Y ) we can write

α =

(
Ai Bj Ck
ai bj ck

)
,

where Ai ∩ Y ̸= ∅;Bj , Ck ⊆ X\Y ; {ai} ⊆ Y, {bj} ⊆ Y \{ai} and {ck} ⊆ X\Y .
Here, I is a nonempty set, but J or K can be empty. For examples: If α ∈ E,
then J is an empty set. And if α ∈ S(X,Y )\E, then both I and J are nonempty
but K can be an empty set.

The following example shows that in general E is not a subsemigroup of
S(X,Y ).

Example 1. (a) Let X = {1, 2, 3} and Y = {1, 2}. Define

α =

(
{1, 2} 3
1 3

)
, β =

(
1 {2, 3}
1 2

)
.

Then we have α, β ∈ E, but

αβ =

(
{1, 2} 3
1 2

)
/∈ E.
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(b) Let X = N denote the set of positive integers and Y = {1, 2}. Define

α =

(
{1, 2} X\{1, 2}
1 3

)
, β =

(
1 X\{1}
1 2

)
.

Thus we have α, β ∈ E, but

αβ =

(
{1, 2} X\{1, 2}
1 2

)
/∈ E.

Therefore, E in (a) and (b) are not subsemigroups of S(X,Y ).
To give a necessary and sufficient condition for E to be a regular subsemi-

group, we first note the following.
(1) If X = Y , then E = S(X,Y ) = T (X) which is a regular semigroup.
(2) If |Y | = 1, say Y = {a}, then for each α ∈ S(X,Y ) we have Xα ∩ Y =

{a} = Y α, so S(X,Y ) = E.

Lemma 1. The following statements are equivalent:
(1) E is a regular subsemigroup of S(X,Y ).
(2) S(X,Y ) is a regular semigroup.
(3) X = Y or |Y | = 1.

Proof. From [6], Corollary 2.4, we have S(X,Y ) is regular if and only if X = Y
or |Y | = 1. Now, assume that E is a regular subsemigroup of S(X,Y ) and
suppose that Y ⊊ X and |Y | ≥ 2. Let a, b ∈ Y be such that a ̸= b and
c ∈ X\Y . Define α, β ∈ E by

α =

(
Y X\Y
a c

)
, β =

(
a X\{a}
a b

)
.

Then αβ =
(
Y X\Y
a b

)
/∈ E which is a contradiction. Therefore, Y = X or

|Y | = 1. Conversely, assume that X = Y or |Y | = 1. If X = Y , then
E = T (X) which is a regular semigroup. If |Y | = 1, then S(X,Y ) is regular
and E = S(X,Y ), thus E is a regular subsemigroup. □

If X is an infinite set and Y is a finite subset of X, then X ̸= Y . Thus we
have the following corollary.

Corollary 1. If X is an infinite set and Y is a finite subset of X, then E =
S(X,Y ) is regular if and only if |Y | = 1.

Theorem 1. S(X,Y ) ∼= T (Z) for some set Z if and only if X = Y and
|Y | = |Z|.

Proof. If X = Y and |Y | = |Z|, then S(X,Y ) = S(Y, Y ) = T (Y ) ∼= T (Z).
Conversely, assume that S(X,Y ) ∼= T (Z). Suppose that Y ⊊ X, then |X| > 1.
If |Y | = 1, say Y = {a}, then S(X,Y ) is a regular semigroup (by Lemma 1)
with more than one element and having

α =

(
X
a

)
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as a zero element. That means S(X,Y ) ∼= T (Z) is a semigroup with zero
which is a contradiction. But, if |Y | > 1, then S(X,Y ) is not regular, thus
S(X,Y ) ≇ T (Z) which is a contradiction. Therefore X = Y and hence
S(X,Y ) = S(Y, Y ) = T (Y ). Thus T (Y ) ∼= T (Z) and this gives |Y | = |Z|. □

Since X ̸= Y when X is an infinite set and Y is a finite subset of X, the
following corollary is an immediate consequence of Theorem 1.

Corollary 2. If X is an infinite set and Y is a finite subset of X, then S(X,Y )
is never isomorphic to T (Z) for any set Z.

From Theorem 1, we see that S(X,Y ) is almost never isomorphic to T (Z).
However, we can embedded T (Y ) into S(X,Y ) by sending α 7→ α′ where
α′ ∈ S(X,Y ) is defined by

xα′ =

{
xα if x ∈ Y,

x if x ∈ X\Y.

In 1959, M. Hall ([3], Theorem 1.1.2) showed that every semigroup A can
be embedded in the full transformation semigroup by using the extended right
regular representation of A. That is for each a ∈ A, define a map ρa : A1 → A1

by xρa = xa (x ∈ A1). Then ρa ∈ T (A1) and Φ : A → T (A1) given by
aΦ = ρa is a monomorphism. Since for each a ∈ A, we have xρa = xa ∈ A
for all x ∈ A, it follows that ρa ∈ S(A1, A) and so Φ maps A into S(A1, A) is
a well-defined monomorphism. That means A can be embedded in S(A1, A)
which is a proper non-regular subsemigroup of T (A1) if A does not contains an
identity element. Thus we have proved the following theorem.

Theorem 2. Every semigroup A can be embedded in S(A1, A).

3. Green’s relations on S(X,Y )

Since S(X,Y ) is not a regular subsemigroup of T (X) if Y ⊊ X and |Y | > 1,
Hall’s theorem ([3], Proposition 2.4.2) can not be applied to find the L and R
relations on this semigroup. However, it is well-known that αLβ in T (X) if
and only if Xα = Xβ; and αRβ in T (X) if and only if πα = πβ (see [1] vol 1,
Lemma 2.5 and Lemma 2.6).

Lemma 2. Let α, β ∈ S(X,Y ). Then α = γβ for some γ ∈ S(X,Y ) if and
only if Xα ⊆ Xβ and Y α ⊆ Y β. Consequently, αLβ if and only if Xα = Xβ
and Y α = Y β.

Proof. We first note that if α = γβ for some γ ∈ S(X,Y ), then Xα ⊆ Xβ and
Y α = Y γβ = (Y γ)β ⊆ Y β since γ ∈ S(X,Y ).

To prove the converse, we suppose that Xα ⊆ Xβ and Y α ⊆ Y β. Then
Y (α|Y ) ⊆ Y (β|Y ) where α|Y , β|Y ∈ T (Y ). Hence, by a standard result, α|Y =
δ(β|Y ) for some δ ∈ T (Y ): that is, yα = (yδ)β for each y ∈ Y . Now, for each
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x /∈ Y , there exists some x′ ∈ X such that xα = x′β since Xα ⊆ Xβ. Thus for
each x /∈ Y , choose such an x′ and extend δ ∈ T (Y ) to γ ∈ T (X) by

xγ =

{
xδ if x ∈ Y,

x′ if x /∈ Y.

Then γ ∈ S(X,Y ) and α = γβ as required. □

We note that for any α ∈ S(X,Y ), the symbol πα will denote the composi-
tion of X induced by the map α, namely

πα = {xα−1 : x ∈ Xα},

and πα(Y ) will denote the subset of πα defined by

πα(Y ) = {yα−1 : y ∈ Xα ∩ Y }.

For α, β ∈ S(X,Y ), A ⊆ πα, and B ⊆ πβ , we say that A refines B if for each
A ∈ A there exists B ∈ B such that A ⊆ B.

Lemma 3. Let α, β ∈ S(X,Y ). Then α = βγ for some γ ∈ S(X,Y ) if and
only if πβ refines πα and πβ(Y ) refines πα(Y ). Consequently, αRβ if and only
if πα = πβ and πα(Y ) = πβ(Y ).

Proof. It is clear that if α = βγ for some γ ∈ S(X,Y ), then πβ refines πα and
πβ(Y ) refines πα(Y ).

Conversely, assume that the conditions hold. For each x ∈ Xβ, there exists
z ∈ X such that x = zβ, so we define γ : X → X by

xγ =

{
zα, if x ∈ Xβ,

xβ, if x ∈ X\Xβ.

Then γ is well-defined since πβ refines πα. Now, we prove that γ ∈ S(X,Y ).
For each y ∈ Y , we have y ∈ X\Xβ or y ∈ Xβ ∩ Y . If y ∈ X\Xβ, then
yγ = yβ ∈ Y since β ∈ S(X,Y ). If y ∈ Xβ ∩ Y , then there exists x ∈ X such
that y = xβ. Since πβ(Y ) refines πα(Y ), we have x ∈ yβ−1 ⊆ y′α−1 for some
y′ ∈ Xα∩Y . Thus yγ = xβγ = xα = y′ ∈ Y . Also, we have xβγ = (xβ)γ = xα
for all x ∈ X by the definition of γ. □

Recall that each group H-class of T (X) is isomorphic to a permutation
group G(A) for some A ⊆ X ([1] vol 1, Theorem 2.10). Here, for the semigroup
S(X,Y ), the result depends on the group which is denoted by G(A,B) and

G(A,B) = {ρ ∈ G(A) : ρ|B ∈ G(B)},

where B ⊆ A for some A ⊆ X and B ⊆ Y .

Theorem 3. Let ϵ be an idempotent in S(X,Y ). Then the group H-class Hϵ

is isomorphic to G(A,B). In this case, A is a cross section of πϵ.
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Proof. Since ϵ is an idempotent, we can write

ϵ =

(
Ci Dj

ci dj

)
,

where ci ∈ Ci∩Y and dj ∈ Dj ⊆ X\Y. Let B = {ci} ⊆ Y and A = {ci}∪{dj} ⊆
X. Since Hϵ = Lϵ ∩Rϵ, we have by Lemma 2 and Lemma 3 that

Hϵ =

{(
Ci Dj

ciσ djδ

)
: σ ∈ G(B), δ ∈ G(A\B)

}
.

Let ρ = σ ∪ δ. Then ρ ∈ G(A,B) and

Hϵ =

{(
Ci Dj

ciρ djρ

)
: ρ ∈ G(A,B)

}
.

Therefore, Hϵ is isomorphic to G(A,B) by sending
(
Ci Dj

ciρ djρ

)
7→ ρ where

G(A,B) is a subgroup of the permutation group G(A). □

We note that when ϵ = idX , then Hϵ the group of units of S(X,Y ) is isomor-
phic to G(X,Y ) and this group was shown to isomorphic to the automorphism
group of S(X,Y ) when |Y | > 2 (see [7], Theorem 4.2).

Clifford and Preston in [1] vol 1, Lemma 2.8, proved that two elements of
T (X) are D-related if and only if they have the same rank, that is, the ranges
of the two elements have the same cardinality. But, for S(X,Y ) we have the
following theorem.

Theorem 4. Let α, β ∈ S(X,Y ). Then αDβ if and only if |Y α| = |Y β|,
|Xα\Y | = |Xβ\Y | and |(Xα ∩ Y )\Y α| = |(Xβ ∩ Y )\Y β|.

Proof. First assume that αLγRβ for some γ ∈ S(X,Y ). Then by Lemma 3,
we have πβ = πγ and πβ(Y ) = πγ(Y ). Thus we can write

β =

(
Ai Bj Ck
ai bj ck

)
, γ =

(
Ai Bj Ck
xi yj zk

)
,

where Ai ∩ Y ̸= ∅;Bj , Ck ⊆ X\Y ; {ai}, {xi} ⊆ Y ; {bj} ⊆ Y \{ai}, {yj} ⊆
Y \{xi} and {ck}, {zk} ⊆ X\Y . Since Xα = Xγ, Y α = Y γ by Lemma 2, we
must have

α =

(
Li Mj Nk
xi yj zk

)
,

where Li ∩ Y ̸= ∅ and Mj , Nk ⊆ X\Y . Then |Y α| = |{xi}| = |I| = |{ai}| =
|Y β|, |Xα\Y | = |{zk}| = |K| = |{ck}| = |Xβ\Y | and |(Xα ∩ Y )\Y α| =
|{yj}| = |J | = |{bj}| = |(Xβ ∩ Y )\Y β|.

Conversely, assume that the conditions hold. We can write

α =

(
Ai Bj Ck
ai bj ck

)
, β =

(
Ui Vj Wk

ui vj wk

)
,
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where Ai ∩ Y ̸= ∅ ̸= Ui ∩ Y ;Bj , Ck, Vj ,Wk ⊆ X\Y ; {ai}, {ui} ⊆ Y ; {bj} ⊆
Y \{ai}, {vj} ⊆ Y \{ui} and {ck}, {wk} ⊆ X\Y . Then we define

µ =

(
Ui Vj Wk

ai bj ck

)
,

thus µ ∈ S(X,Y ) and Y µ = {ai} = Y α, Xµ = {ai} ∪ {bj} ∪ {ck} = Xα. So
αLµ by Lemma 2. Also we have πµ = πβ and πµ(Y ) = {Ui} ∪ {Vj} = πβ(Y ).
Hence µRβ by Lemma 3 and therefore αDβ. □

Corollary 3. Let α, β ∈ S(X,Y ). If Y is a finite subset of X, then αDβ if
and only if |Xα| = |Xβ|, |Y α| = |Y β| and |Xα ∩ Y | = |Xβ ∩ Y |.

Proof. Suppose that Y is a finite subset of X. If αDβ, then by Theorem 4, we
have |Y α| = |Y β|, |Xα\Y | = |Xβ\Y | and |(Xα ∩ Y )\Y α| = |(Xβ ∩ Y )\Y β|.
Since Xα∩Y = Y α∪̇[(Xα∩Y )\Y α], it follows that |Xα∩Y | = |Y α|+ |(Xα∩
Y )\Y α| = |Y β| + |(Xβ ∩ Y )\Y β| = |Y β∪̇[(Xβ ∩ Y )\Y β]| = |Xβ ∩ Y |. Since
Xα = (Xα ∩ Y )∪̇(Xα\Y ), we get |Xα| = |Xα ∩ Y | + |Xα\Y | = |Xβ ∩ Y | +
|Xβ\Y | = |(Xβ ∩ Y )∪̇(Xβ\Y )| = |Xβ|.

Conversely, assume that the conditions hold. Since Y is a finite set, we have
Y α, Y β,Xα∩Y and Xβ ∩Y are finite. Hence |Y α|+ |(Xα∩Y )\Y α| = |Xα∩
Y | = |Xβ ∩ Y | = |Y β|+ |(Xβ ∩ Y )\Y β| which implies that |(Xα ∩ Y )\Y α| =
|(Xβ ∩ Y )\Y β| since |Y α| = |Y β| is finite. Since |Xα ∩ Y | = |Xβ ∩ Y | is
finite and |Xα ∩ Y |+ |Xα\Y | = |Xα| = |Xβ| = |Xβ ∩ Y |+ |Xβ\Y |, we have
|Xα\Y | = |Xβ\Y |. Therefore, αDβ as required. □

Theorem 5. Let α, β ∈ S(X,Y ). Then α = λβµ for some λ, µ ∈ S(X,Y ) if
and only if |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y |. Consequently,
αJ β if and only if |Xα| = |Xβ|, |Y α| = |Y β| and |Xα\Y | = |Xβ\Y |.

Proof. Assume that α = λβµ for some λ, µ ∈ S(X,Y ). Then

|Xα| = |Xλβµ| = |(Xλβ)µ| ≤ |Xλβ| = |(Xλ)β| ≤ |Xβ|,
|Y α| = |Y λβµ| = |(Y λβ)µ| ≤ |Y λβ| = |(Y λ)β| ≤ |Y β|, and

|Xα\Y | = |Xλβµ\Y | = |(Xλ)βµ\Y | ≤ |Xβµ\Y |,
= |(Xβ)µ\Y |,
= |[(Xβ\Y ) ∪ (Xβ ∩ Y )]µ\Y |,
= |[(Xβ\Y )µ ∪ (Xβ ∩ Y )µ]\Y |,
= |[(Xβ\Y )µ\Y ] ∪ [(Xβ ∩ Y )µ\Y ]|,
= |(Xβ\Y )µ\Y | ≤ |(Xβ\Y )µ| ≤ |Xβ\Y |.

Conversely, assume that the conditions hold and write

α =

(
Ai Bj Ck
ai bj ck

)
,
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where Ai ∩ Y ̸= ∅;Bj , Ck ⊆ X\Y ; {ai} ⊆ Y, {bj} ⊆ Y \{ai}, {ck} ⊆ X\Y . By
the assumption we can write

β =

(
Ui Ul Vm Wn Wk

ui ul vm wn wk

)
,

where Ui ∩ Y ̸= ∅ ̸= Ul ∩ Y ;Vm,Wn,Wk ⊆ X\Y ; {ui, ul} ⊆ Y, {vm} ⊆
Y \{ui, ul}, {wn, wk} ⊆ X\Y and |I|+ |J |+ |K| ≤ |I|+ |L|+ |M |+ |N |+ |K|.
We consider in two cases:

Case 1 : |J | ≤ |L| + |M | + |N |. Let L ∪M ∪N = P ∪̇Q where |P | = |J |.
Then we can write {Ul}∪{Vm}∪{Wn} = {Sp}∪{Sq} and rewrite β as follows:

β =

(
Ui Sp Sq Wk

ui sp sq wk

)
.

Since |J | = |P |, there is a bijection φ : J → P . Now define

λ =

(
Ai Bj Ck
xi yjφ zk

)
,

where xi ∈ Ui ∩ Y, yjφ ∈ Sjφ, zk ∈Wk. So λ ∈ S(X,Y ). Choose i0 ∈ I and let
I ′ = I\{i0}. Then define

µ =

(
ui′ sjφ wk X\{ui′ , sjφ, wk}
ai′ bj ck ai0

)
.

So µ ∈ S(X,Y ) and α = λβµ.

Case 2 : |J | > |L| + |M | + |N |. Then Xβ is infinite (for if Xβ is finite,
then |Xα| = |I| + |J | + |K| > |I| + |L| + |M | + |N | + |K| = |Xβ| which is a
contradiction). Hence |J | ≤ |I| or |J | ≤ |K| are infinite cardinals. If |J | ≤ |I|
is an infinite cardinal, then write I = P ∪̇Q where |P | = |I|, |Q| = |J |. Thus
we can write {Ui} = {Sp} ∪ {Sq} and rewrite β as follows:

β =

(
Sp Sq Ul Vm Wn Wk

sp sq ul vm wn wk

)
.

Since |I| = |P | and |J | = |Q|, there are bijections φ : I → P and ψ : J → Q.
Then define λ and µ as follows:

λ =

(
Ai Bj Ck
xiφ yjψ zk

)
,

where xiφ ∈ Siφ ∩ Y, yjψ ∈ Sjψ, zk ∈Wk,
and

µ =

(
si′φ sjψ wk X\{si′φ, sjψ, wk}
ai′ bj ck ai0

)
,

where I ′ = I\{i0} for some fixed i0 ∈ I. So, we see that λ, µ ∈ S(X,Y ) and
α = λβµ. For the case |J | ≤ |K| is an infinite cardinal, we write K = G∪̇H
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where |G| = |J |, |H| = |K|. Write {Wk} = {Tg}∪{Th} and rewrite β as follows:

β =

(
Ui Ul Vm Wn Tg Th
ui ul vm wn tg th

)
.

As above, we can define λ, µ ∈ S(X,Y ) such that α = λβµ. □

The following example shows that in general D ̸= J on S(X,Y ).

Example 2. Let X = N and Y the set of positive even integers. Then we
define

α =

(
n

2n

)
n∈N

and β =

(
2n X\Y
4n 2

)
n∈N

.

Hence α, β ∈ S(X,Y ) and |Xα| = ℵ0 = |Xβ|, |Y α| = ℵ0 = |Y β|, |Xα\Y | =
0 = |Xβ\Y |, so αJ β. Since |(Xα ∩ Y )\Y α| = ℵ0 ̸= 1 = |(Xβ ∩ Y )\Y β|, we
have α and β are not D-related on S(X,Y ).

Even Y is a finite proper subset of X, we still have D ̸= J on S(X,Y ).

Example 3. Let X = N and Y = {1, 2, 3, 4}. Then we define

α =

(
{1, 2} {3, 4} n+ 4
3 1 n+ 4

)
n∈N

and β =

(
{1, 2, 4} 3 {5, 6} n+ 6

1 2 3 n+ 6

)
n∈N

.

Hence α, β ∈ S(X,Y ) and |Xα| = ℵ0 = |Xβ|, |Y α| = 2 = |Y β|, |Xα\Y | =
ℵ0 = |Xβ\Y |, so αJ β. Since |Xα ∩ Y | = 2 but |Xβ ∩ Y | = 3, we have α and
β are not D-related on S(X,Y ) by Corollary 3.

Theorem 6. D = J on S(X,Y ) if and only if X is a finite set or X = Y or
|Y | = 1.

Proof. If X is a finite set, then by [3], Proposition 2.1.4 we have D = J . If
X = Y , then S(X,Y ) = T (X) and thus D = J by [1], Theorem 2.9(i). If
|Y | = 1, then S(X,Y ) = E. Let α, β ∈ S(X,Y ) be such that αJ β. So,
|Xα| = |Xβ|, |Y α| = |Y β| and |Xα\Y | = |Xβ\Y |. Since α, β ∈ E, we have
|(Xα∩Y )\Y α| = |Y α\Y α| = 0 = |Y β\Y β| = |(Xβ ∩Y )\Y β| and hence αDβ.
Thus D = J .

Conversely, assume that D = J on S(X,Y ), and suppose on contrary that
X is an infinite set, Y ⊊ X and |Y | ≥ 2. Let a, b be two distinct elements in
Y and c ∈ X\Y . We consider in two cases:

Case 1 : Y is a finite set. Then |X\Y | = |X| and define α, β ∈ S(X,Y ) as
follows:

α =

(
Y c x
a b x

)
x∈X\(Y ∪{c})

and β =

(
Y x
a x

)
x∈X\Y

.

Thus |Xα| = |X\Y | = |Xβ|, |Y α| = 1 = |Y β| and |Xα\Y | = |X\Y | =
|Xβ\Y |, we get αJ β. But, |Xα ∩ Y | = 2 ̸= 1 = |Xβ ∩ Y |, so α and β
are not D-related by Corollary 3 and this leads to a contradiction.
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Case 2 : Y is an infinite set. Then define α, β ∈ S(X,Y ) as follows:

α =

(
x {a, b} X\Y
x a b

)
x∈Y \{a,b}

and β =

(
x (X\Y ) ∪ {a}
x a

)
x∈Y \{a}

.

Since |Xα| = |Y | = |Xβ|, |Y α| = |Y | = |Y β| and |Xα\Y | = 0 = |Xβ\Y |, we
get αJ β. But, |(Xα ∩ Y )\Y α| = 1 ̸= 0 = |(Xβ ∩ Y )\Y β|, so α and β are not
D-related which is a contradiction. □

As a direct consequence of Theorem 6, we have the following corollary.

Corollary 4. If X is an infinite set and Y is a finite subset of X, then D = J
on S(X,Y ) if and only if |Y | = 1.

4. Ideals of S(X,Y )

Let p be any cardinal number and let

p′ = min{q : q > p}.
Note that p′ always exists since the cardinals are well-ordered and when p is
finite we have p′ = p + 1 = the successor of p. As shown by Malcev [5], the
ideals of T (X) for any set X are precisely the sets:

Tr = {α ∈ T (X) : |Xα| < r},
where 2 ≤ r ≤ |X|′ (see also [1] vol 2, Theorem 10.59).

To describe ideals of S(X,Y ) for any set X and any nonempty subset Y of
X, we let |X| = a, |Y | = b and |X\Y | = c. In addition, for each cardinals r, s, t
such that 2 ≤ r ≤ a′, 2 ≤ s ≤ b′ and 1 ≤ t ≤ c′, define

S(r, s, t) = {α ∈ S(X,Y ) : |Xα| < r, |Y α| < s and |Xα\Y | < t}.
Then if r = a′ or s = b′ or t = c′, the set S(r, s, t) can be deduced in a simple
form:

S(a′, s, t) = {α ∈ S(X,Y ) : |Y α| < s and |Xα\Y | < t},

S(r, b′, t) = {α ∈ S(X,Y ) : |Xα| < r and |Xα\Y | < t},

S(r, s, c′) = {α ∈ S(X,Y ) : |Xα| < r and |Y α| < s},

S(a′, b′, t) = {α ∈ S(X,Y ) : |Xα\Y | < t},

S(r, b′, c′) = {α ∈ S(X,Y ) : |Xα| < r},

S(a′, s, c′) = {α ∈ S(X,Y ) : |Y α| < s},

and S(a′, b′, c′) = S(X,Y ).

We observe that: ifX = Y , then |X| = a = |Y | and |X\Y | = 0, thus S(r, r, 1) =
{α ∈ S(X,Y ) : |Xα| < r} = {α ∈ T (X) : |Xα| < r} which is an ideal of T (X).

Theorem 7. The set S(r, s, t) is an ideal of S(X,Y ).
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Proof. Let α ∈ S(r, s, t) and λ, µ ∈ S(X,Y ). Then |Xα| < r, |Y α| < s and
|Xα\Y | < t. Thus by using the same proof as given in Theorem 5, we get
|X(λαµ)| ≤ |Xα| < r, |Y (λαµ)| ≤ |Y α| < s and |X(λαµ)\Y | ≤ |Xα\Y | < t.
Hence λαµ ∈ S(r, s, t). Therefore, S(r, s, t) is an ideal of S(X,Y ). □

We note that if r ≤ u, s ≤ v and t ≤ w, then S(r, s, t) ⊆ S(u, v, w). The
following example shows that there is an ideal in S(X,Y ) which is not of the
form S(r, s, t) and the set of ideals of S(X,Y ) does not form a chain under the
set inclusion.

Example 4. Let X = {1, 2, 3, 4} and Y = {1, 2}. Then |X| = 4, |Y | = 2
and |X\Y | = 2. Since S(3, 3, 1) and S(4, 2, 2) are ideals of S(X,Y ), we have
S(3, 3, 1) ∪ S(4, 2, 2) is also an ideal of S(X,Y ). Suppose that S(3, 3, 1) ∪
S(4, 2, 2) = S(ℓ,m, n) for some 2 ≤ ℓ ≤ 5, 2 ≤ m ≤ 3 and 1 ≤ n ≤ 3. If ℓ < 4

or n < 2, then there is α =
( {1,2} 3 4

1 2 4

)
∈ S(4, 2, 2)\S(ℓ,m, n), and if m < 3,

then there is β =
(
1 {2,3,4}
1 2

)
∈ S(3, 3, 1)\S(ℓ,m, n). Both cases contradict our

supposition. So ℓ ≥ 4,m ≥ 3 and n ≥ 2. Consider δ =
(
1 2 {3,4}
1 2 3

)
∈ S(4, 3, 2),

but δ /∈ S(3, 3, 1) ∪ S(4, 2, 2), so S(3, 3, 1) ∪ S(4, 2, 2) ̸= S(r, s, t) for all r ≥ 4,
s ≥ 3 and t ≥ 2. Since α ∈ S(4, 2, 2)\S(3, 3, 1) and β ∈ S(3, 3, 1)\S(4, 2, 2), we
conclude that the set of ideals of S(X,Y ) does not form a chain.

To obtain ideals of S(X,Y ) we need the following notation. Let Z be a
nonempty subset of S(X,Y ). Define

K(Z) = {α ∈ S(X,Y ) : |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and
|Xα\Y | ≤ |Xβ\Y | for some β ∈ Z}.

Then we see that Z ⊆ K(Z) and Z1 ⊆ Z2 implies K(Z1) ⊆ K(Z2).

Theorem 8. The ideals of S(X,Y ) are precisely the set K(Z) for some non-
empty subset Z of S(X,Y ).

Proof. Let I be an ideal of S(X,Y ). We prove that I = K(I). If α ∈ K(I),
then |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y | for some β ∈ I and
thus by Theorem 5 we have α = λβµ for some λ, µ ∈ S(X,Y ). Since β ∈ I is
an ideal of S(X,Y ), it follows that α = λβµ ∈ I, and that K(I) ⊆ I. Usually,
we have I ⊆ K(I). Therefore, I = K(I).

Conversely, we prove that K(Z) is an ideal of S(X,Y ). Let α ∈ K(Z)
and λ, µ ∈ S(X,Y ). Then |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y |
for some β ∈ Z. Like before, we have |X(λαµ)| ≤ |Xα|, |Y (λαµ)| ≤ |Y α|
and |X(λαµ)\Y | ≤ |Xα\Y |. Thus |X(λαµ)| ≤ |Xβ|, |Y (λαµ)| ≤ |Y β| and
|X(λαµ)\Y | ≤ |Xβ\Y |. Hence λαµ ∈ K(Z) and therefore K(Z) is an ideal of
S(X,Y ). □

The following result was first proved by Malcev [5] in 1952.
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Corollary 5. The ideals of T (X) are precisely the set T (r) = {α ∈ T (X) :
|Xα| < r}, where 2 ≤ r ≤ |X|′.

Proof. By taking Y = X in Theorem 8, we see that the ideals of S(X,X) =
T (X) are precisely the set K(Z) for some nonempty subset Z of T (X). Let r
be the least cardinal of A = {s : s > |Xβ| for all β ∈ Z} (A is nonempty since
|X|′ ∈ A). Then for each α ∈ K(Z), there is β ∈ Z such that |Xα| ≤ |Xβ| < r
and thus K(Z) ⊆ T (r). Conversely, suppose that α /∈ K(Z), then |Xα| > |Xβ|
for all β ∈ Z. Thus |Xα| ∈ A and hence |Xα| ≥ r since r is the least cardinal
of A, that means α /∈ T (r). So, T (r) ⊆ K(Z) and therefore K(Z) = T (r). □
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