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SOME RESULTS ON THE LOCALLY EQUIVALENCE ON A

NON-REGULAR SEMIGROUP

Sevgi Atlihan

Abstract. On any semigroup S, there is an equivalence relation φS ,
called the locally equivalence relation, given by a φSb ⇔ aSa = bSb for
all a, b ∈ S. In Theorem 4 [4], Tiefenbach has shown that if φS is a band
congruence, then Ga := [a]φS ∩ (aSa) is a group. We show in this study

that Ga := [a]φS ∩ (aSa) is also a group whenever a is any idempotent

element of S. Another main result of this study is to investigate the
relationships between [a]φS and aSa in terms of semigroup theory, where

φS may not be a band congruence.

1. Introduction

On any semigroup S, there is an equivalence relation φS , called the locally

equivalence relation, given by

aφSb ⇔ aSa = bSb for all a, b ∈ S.

If S is a band, then φS is a congruence, because φS separates idempotents of
S by [3]. Also recall that φS is not a congruence in general. In Theorem 4 [4],
Tiefenbach has shown that if φS is a band congruence, that is, a φSa2 for all a ∈
S, then Ga := [a]φS ∩ (aSa) is a group and Ga equals a[a]φSa, where [a]φS is

the φS-class determined by a ∈ S.
Firstly, we want to identify the relationships between [a]φS and aSa, and

then we show that Ga := [a]φS ∩(aSa) is a group whenever a is any idempotent
element of S.

To achieve this, let us consider S as the union of two disjoint subsets US
0

and US
1 , where

US
0 := {a ∈ S | [a]φS \ aSa = ∅} and US

1 := {a ∈ S | [a]φS \ aSa 6= ∅}.

It is well known fact that S = US
0 when S is a regular semigroup and

moreover, F. Pastijn has declared in [2, p. 161], that the two-sided implication
“aφSb ⇔ aHb” is true, where H is one of the Green’s relation on S. Thus by
Corollary 2.2.6 [1], Ge is a group where e is an idempotent element of S. But
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φS doesn’t have to be a band congruence. For example, let S = {a, b, e, f, 0}
be a regular semigroup whose multiplication table is given by:

. a b e f 0
a 0 e 0 a 0
b f 0 b 0 0
e a 0 e 0 0
f 0 b 0 f 0
0 0 0 0 0 0

It is easy to check that [a]φS = {a}, but [a2]φS = [0]φS ∩ [a]φS = ∅ and

therefore φS is not a band congruence.
In this study, we also try to identify the possible relationships between a

non-regular semigroup S and US
i (i = 0, 1) in terms of the semigroup theory.

For undefined terms in semigroup theory, see [1].

2. Basic results

In this section, we establish some basic properties concerning a semigroup
S and the set US

i (i = 0, 1), and also we give some concrete examples related
with obtained results for a non-regular semigroup.

Let us start by stating the following lemmas.

Lemma 2.1. Let S be a semigroup and a ∈ S. If a ∈ US
i , then [a]φS ⊆ US

i .

The proof of this lemma is straightforward.

Lemma 2.2. If S is a semigroup, then either 〈a〉 = U
〈a〉
0 or 〈a〉 = U

〈a〉
1 for all

a ∈ S.

Proof. Let a ∈ S. According the Theorem 1.2.2 [1], either 〈a〉 ∼= (N,+) or
there exist positive integers m (the index of a) and r (the period of a).

If 〈a〉 ∼= (N,+), then 〈a〉 = U
〈a〉
1 , since as /∈ as〈a〉as for all s ∈ N .

If m is the index and r is the period of a, then by Theorem 1.2.2 [1], 〈a〉 =
{a, a2, . . . , am+r−1}. If m = 1, then unambiguously 〈a〉 is a group and it follows

that 〈a〉 = U
〈a〉
0 . If m ≥ 2, then by the definition of m as /∈ as〈a〉as for all 1 ≤

s < m, whence as ∈ U
〈a〉
1 . The definition of r implies that am+2r = am. Then

since
am−1atam−1 = amat+m−2 = am+2rat+m−2 = ama2r−2+tam

for all 1 ≤ t < m + r − 1 we obtain am−1〈a〉am−1 ⊆ am〈a〉am. Also, since

am〈a〉am ⊆ am−1〈a〉am−1, we have am ∈ [am−1]φ〈a〉 . Since am−1 ∈ U
〈a〉
1 , we

have am ∈ U
〈a〉
1 by Lemma 2.1.

Finally to complete the proof of this lemma, we have to show that am+k ∈

U
〈a〉
1 for all 1 ≤ k < r − 1 and r > 1. Let 1 ≤ k < r − 1 and t ∈ N . Then,

am+k ∈ [am]φ〈a〉 for all 1 ≤ k < r − 1, since

am+katam+k = am+r+katam+r+k = am+k+1a2r−2+tam+k+1
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and

am+k+1〈a〉am+k+1 ⊆ am+k〈a〉am+k.

Hence, since am ∈ U
〈a〉
1 , am+k ∈ U

〈a〉
1 for all 1 ≤ k < r − 1 by Lemma 2.1.

Consequently, 〈a〉 = U
〈a〉
1 . �

Let S be a semigroup and T be a proper subsemigroup of S. We try to get
an answer of the question: “if a ∈ US

i , is a ∈ UT
i (i = 0, 1)?”. The next lemma

shows that the answer is yes in the case i = 0 and T is an ideal.

Lemma 2.3. Let S be a semigroup, T be a proper ideal of S and a ∈ US
0 ∩ T .

Then [a]φS = [a]φT if and only if a ∈ UT
0 .

Proof. Take a ∈ US
0 ∩ T . Since a ∈ US

0 , we have [a]φS ⊆ aSa. Let b ∈ [a]φS .
Then since a, b ∈ aSa = bSb, it follows that there exist x, y ∈ S such that a =
bxb, b = aya. Hence a, b ∈ T and also aTa = bT b since T is an ideal and it
follows that b ∈ [a]φT , that is, [a]φS ⊆ [a]φT .

Now by the hypothesis, [a]φT ⊆ aTa ⊆ aSa. Let b ∈ [a]φT . Then there exist
z, t ∈ T such that b = aza, a = btb and it follows that aSa = bSb which implies
that b ∈ [a]φS as desired.

Conversely, let b ∈ [a]φT . By [a]φS ⊆ aSa and the hypothesis, one can get
the set inclusion [a]φT ⊆ aSa. Then there exist p, q ∈ S such that b = bpb,
a = aqa. Therefore, since qa, pb are idempotent elements and T is ideal,
a, b ∈ aTa as desired.

The next lemma shows that the equality US×T
i = US

i × UT
i (i = 0, 1) holds

for i = 0 when S and T are semigroups. �

Lemma 2.4. Let S and T be semigroups. Then US×T
0 = US

0 ×UT
0 and US×T

1 =
(US

0 × UT
1 ) ∪ (US

1 × UT
1 ) ∪ (US

1 × UT
0 ).

Proof. Let (a, b), (c, d) ∈ S × T . It is easily seen that

(a, b)φS×T (c, d) if and only if aφSc and bφT d

by the definition of multiplication on S × T . This implies that [a]φS × [b]φT =
[(a, b)]φS×T .

Firstly, if (a, b) is an element of US×T
0 , then

[a]φS × [b]φT = [(a, b)]φS×T ⊆ (aSa)× (bT b),

and so that US×T
0 ⊆ US

0 × UT
0 . Similarly, one can see that US

0 × UT
0 ⊆ US×T

0 ,
as desired.

Secondly, if (a, b) is an element of US
1 ×UT

1 , then there exist c ∈ [a]φS and d ∈
[b]φT such that c /∈ aSa and d /∈ bSb, that is, (c, d) /∈ (a, b)(S × T )(a, b). Also,

since [a]φS × [b]φT = [(a, b)]φS×T , we get (a, b) ∈ US×T
1 . Similarly, US

1 × UT
0

and US
0 × UT

1 are subsets of US×T
1 . On the other hand if (a, b) ∈ US×T

1 , then
there exists (c, d) ∈ [(a, b)]φS×T such that either c /∈ aSa or d /∈ bSb. Also, the
equality [a]φS × [b]φT = [(a, b)]φS×T holds. Thus, the proof is completed. �
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In the following Lemma 2.5, we get a positive answer of the question “Is the
structure of the set US

i (i = 0, 1) preserved under isomorphism?”.

Lemma 2.5. Let S and T be semigroups and θ : S → T be an isomorphism.

Then the equality US
i θ = UT

i (i = 0, 1) holds.

The proof of this lemma is obvious since US
0 ∩ US

1 = ∅ and θ is an isomor-
phism.

3. The φS-class with an idempotent element

In this section, first we show that for any semigroup S, Ge is a group where
e is an idempotent element of S. To proof of this, we need the following next
lemma.

Lemma 3.1. Let S be a semigroup and e be an idempotent element of S. Then

[e]φS has only one idempotent element and [e]φS is a subsemigroup of S.

Proof. Firstly, we show that [e]φS is a semigroup. Let a, b ∈ [e]φS . By the

definition of φS , eSe = aSa = bSb. Since e is idempotent, then e is the
identity element of aSa. Thus a3e = a3 = ea3. It follows that a6 ∈ a3Sa3 =
a6Sa6 = a12Sa12. Hence there exists y ∈ S such that a12ya6(= a6ya12) is the
identity element of a3Sa3. Further, since e ∈ aSa, there exists x ∈ S such that
e = axa. It follows that (ax)e = ax(axa) = (axa)xa = e(xa). Therefore, since
a2Sa2 ⊆ aSa and

aSa = e(aSa)e

= (axa)(aSa)(axa)

= (ax)e(a2Sa2)e(xa)

= e(xa)(a2Sa2)(ax)e

= ex(a3Sa3)xe

= ex(a12ya6)(a3Sa3)(a12ya6)xe

= (e(xa))(a11ya6)(a3Sa3)(a12ya5)((ax)e)

= (ax)e(a11ya6)(a3Sa3)(a12ya5)e(xa)

= (axa)(a10ya6)(a3Sa3)(a12ya4)(axa)

= e(a10ya6)(a3Sa3)(a12ya4)e

= a2(a8ya6)(a3Sa3)(a12ya2)a2,

we have e ∈ aSa = a2Sa2. Thus there exists t ∈ S such that e = a2ta2. Hence
we get

ae = a(a2ta2) = a3ta2 = (ea3)(ta2) = (ea)(a2ta2) = eae.

Similarly, one can show that ea = eae which implies that ae = ea. Using the
same arguments we have eb = be. Since ea = ae, aSa = eSe = bSb and e is
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idempotent, we obtain

eSe = e(eSe)e

= e(aSa)e

= (ea)S(ae)

= (ae)S(ea)

⊆ a(eSe)

⊆ abSb.

Also, since eb = be, then we get

eSe = e(eSe)e

⊆ e(abSb)e

= (ea)(bS)(be)

= (ae)(bS)(eb)

= a(be)Seb

= ab(aS)ab

⊆ abSab.

On the other hand since aSa = eSe = bSb, then we have

abSab ⊆ (eSe)b ⊆ (bSb)b ⊆ bSb ⊆ eSe

which implies that ab ∈ [e]φS , as desired.

The rest of the proof of this lemma follows from the fact that φS separates
idempotents. �

Now we are ready to proof the following theorem.

Theorem 3.2. Let S be a non-regular semigroup and e be an idempotent ele-

ment of S. Then Ge = [e]φS ∩ eSe is a group.

Proof. By Theorem 5.1.1 [1], one can show that any regular semigroup with
only one idempotent element is a group. To prove this theorem it is enough to
show that e ∈ US

1 and Ge 6= {e}.
For all a ∈ Ge, since a ∈ eSe and e is an idempotent element, it is easy to see

that ea = ae = a. Let a, b ∈ Ge \ {e}. Assume that there exists an element c of
[e]φS \Ge such that ab = c, then ec = e(ab) = (ea)b = ab = a(be) = (ab)e = ce,
which is a contradiction by c ∈ [e]φS \Ge. Consequently, for all a, b ∈ Ge \ {e}
we have ab ∈ Ge. Since [e]φS is a semigroup by Lemma 3.1, then Ge is a
semigroup. On the other hand since Ge is a regular semigroup with only one
idempotent element, then Ge is a group. This completes the proof of this
theorem. �

Finally, for any semigroup S we try to identify the possible relationships
between the index of e 6= k ∈ [e]φS and e ∈ US

i (i = 0, 1).
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Notice that Ge in the statement of Theorem 3.2 is the H-class containing e
that is denoted by He.

Theorem 3.3. Let S be a semigroup and e be an idempotent element of S. If

e 6= k ∈ [e]φS has finite order, then there exists a positive integer t such that

kt = e. In particular, the index of k should be greater than or equal 3.

Proof. Let e 6= k ∈ [e]φS . Suppose that k has finite order. Then there exist
positive integers m (the index of k) and r (the period of k) such that km+r = km

and the order of k is m+r−1. By the proof of Lemma 3.1, kSk = k2Sk2. Then
we obtain k3 ∈ k6Sk6. Thus there exists x ∈ S such that k3 = k6xk6. Simple
calculations show that k6xk3 = k3xk6 is the identity element of kSk = eSe.
Then, since e is the identity element of eSe, we get e = k6xk3 = k3xk6.
Further, since kn ∈ kSk for every integer n ≥ 3,

(1) kne = kn = ekn.

We will complete the proof by investigating the following cases:
Case 1: Let m = 1 and assume that r = 1. Then, since k = k2, we get

k = k6 = k3 = k6xk6 = k6xk3 = e, which contradicts k 6= e. Hence r ≥ 2.
In the case r = 2 we have k = k3. Therefore, one can obtain that k2 = k4 =

k3k = (k6xk6)k = (k6xk2)k = e from k2 = k4 = k6.
In the case r = 3 we have k = k4. Since k3 = k6, then k3 = e.
In the case r ≥ 4, we have kr = k3kr−3 = (k6xk6)kr−3 = k6xkr+1k2 =

k6xkk2 = e. Therefore 〈k〉 is a group by (1).
Case 2: Let m = 2. Simple calculations show that for r = 1, 2, k2 = e and

for r = 3, k6 = e. For r ≥ 4, it follows that kr = k3kr−3 = (k6xk6)kr−3 =
k6xkr+2k = k6xk2k = e.

Case 3: Let m = 3. For r = 1, 2, 3, simple calculations show us that k6 = e.
For r ≥ 4, we obtain that kr = k3kr−3 = (k6xk6)kr−3 = k6xkr+3 = k6xk3 = e.

Case 4: If 4 ≤ m ≤ 6, then there exists 0 ≤ t ≤ 2 integer such that m+t = 6.
Hence k6 = km+t = km+r+t. It follows that k3 = k6xk6 = k6xkm+r+t =
(k6xk6)kr = kr+3. This is a contradiction by the definition of m and r.

Case 5: If m ≥ 7, then km−3 = km−6k3 = km−6(k6xk6) = kmxk6 =
km+rxk6 = km+r−6(k6xk6) = km+r−6k3 = km+r−3, which is a contradiction
by the definition of m and r. �

We have the following corollary.

Corollary 3.4. Let S be a semigroup and e be an idempotent element of S. If

e 6= k ∈ [e]φS has finite order and the index of k is 2 or 3, then e ∈ US
1 .

Proof. Take m and r as the index and period of k, respectively, we provide a
proof for the case m = 2 only, by the proof of Theorem 3.3 and the hypothesis.
Assume that e ∈ US

0 . Then k ∈ US
0 by Lemma 2.1 and the hypothesis. Hence,

if k ∈ eSe, then we have

(2) kne = kn = ekn
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for every integer n ≥ 1. For r = 1, since k2 = k3 = e, by the proof of Case 2
in Theorem 3.3, then k = ke = kk2 = e by (2), which is a contradiction with
k 6= e. For r = 2, since k2 = e, by the proof of Case 2 in Theorem 3.3, then
k3 = kk2 = ke = k by (2), this is a contradiction by the definition of m and r.
A similar argument gives a contradiction for the case r ≥ 3 which completes
the proof of this corollary. �
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