SOME RESULTS ON THE LOCALLY EQUIVALENCE ON A NON-REGULAR SEMIGROUP

Sevgi Atlinan

Abstract

On any semigroup S, there is an equivalence relation ϕ^{S}, called the locally equivalence relation, given by $a \phi^{S} b \Leftrightarrow a S a=b S b$ for all $a, b \in S$. In Theorem 4 [4], Tiefenbach has shown that if ϕ^{S} is a band congruence, then $G_{a}:=[a]_{\phi^{S}} \cap(a S a)$ is a group. We show in this study that $G_{a}:=[a]_{\phi S} \cap(a S a)$ is also a group whenever a is any idempotent element of S. Another main result of this study is to investigate the relationships between $[a]_{\phi} S$ and $a S a$ in terms of semigroup theory, where ϕ^{S} may not be a band congruence.

1. Introduction

On any semigroup S, there is an equivalence relation ϕ^{S}, called the locally equivalence relation, given by

$$
a \phi^{S} b \Leftrightarrow a S a=b S b \text { for all } a, b \in S .
$$

If S is a band, then ϕ^{S} is a congruence, because ϕ^{S} separates idempotents of S by [3]. Also recall that ϕ^{S} is not a congruence in general. In Theorem 4 [4], Tiefenbach has shown that if ϕ^{S} is a band congruence, that is, $a \phi^{S} a^{2}$ for all $a \in$ S, then $G_{a}:=[a]_{\phi^{S}} \cap(a S a)$ is a group and G_{a} equals $a[a]_{\phi^{s}} a$, where $[a]_{\phi^{s}}$ is the ϕ^{S}-class determined by $a \in S$.

Firstly, we want to identify the relationships between $[a]_{\phi^{s}}$ and $a S a$, and then we show that $G_{a}:=[a]_{\phi^{S}} \cap(a S a)$ is a group whenever a is any idempotent element of S.

To achieve this, let us consider S as the union of two disjoint subsets U_{0}^{S} and U_{1}^{S}, where

$$
U_{0}^{S}:=\left\{a \in S \mid[a]_{\phi^{S}} \backslash a S a=\emptyset\right\} \text { and } U_{1}^{S}:=\left\{a \in S \mid[a]_{\phi^{S}} \backslash a S a \neq \emptyset\right\} .
$$

It is well known fact that $S=U_{0}^{S}$ when S is a regular semigroup and moreover, F. Pastijn has declared in [2, p. 161], that the two-sided implication " $a \phi^{S} b \Leftrightarrow a \mathcal{H} b$ " is true, where \mathcal{H} is one of the Green's relation on S. Thus by Corollary 2.2.6 [1], G_{e} is a group where e is an idempotent element of S. But

Received March 2, 2012.

2010 Mathematics Subject Classification. 20M10.
Key words and phrases. ϕ^{S}-class, idempotent, finite order, group.
ϕ^{S} doesn't have to be a band congruence. For example, let $S=\{a, b, e, f, 0\}$ be a regular semigroup whose multiplication table is given by:

.	a	b	e	f	0
a	0	e	0	a	0
b	f	0	b	0	0
e	a	0	e	0	0
f	0	b	0	f	0
0	0	0	0	0	0

It is easy to check that $[a]_{\phi^{S}}=\{a\}$, but $\left[a^{2}\right]_{\phi^{S}}=[0]_{\phi^{S}} \cap[a]_{\phi^{S}}=\emptyset$ and therefore ϕ^{S} is not a band congruence.

In this study, we also try to identify the possible relationships between a non-regular semigroup S and $U_{i}^{S}(i=0,1)$ in terms of the semigroup theory.

For undefined terms in semigroup theory, see [1].

2. Basic results

In this section, we establish some basic properties concerning a semigroup S and the set $U_{i}^{S}(i=0,1)$, and also we give some concrete examples related with obtained results for a non-regular semigroup.

Let us start by stating the following lemmas.
Lemma 2.1. Let S be a semigroup and $a \in S$. If $a \in U_{i}^{S}$, then $[a]_{\phi^{S}} \subseteq U_{i}^{S}$.
The proof of this lemma is straightforward.
Lemma 2.2. If S is a semigroup, then either $\langle a\rangle=U_{0}^{\langle a\rangle}$ or $\langle a\rangle=U_{1}^{\langle a\rangle}$ for all $a \in S$.

Proof. Let $a \in S$. According the Theorem 1.2.2 [1], either $\langle a\rangle \cong(N,+)$ or there exist positive integers m (the index of a) and r (the period of a).

If $\langle a\rangle \cong(N,+)$, then $\langle a\rangle=U_{1}^{\langle a\rangle}$, since $a^{s} \notin a^{s}\langle a\rangle a^{s}$ for all $s \in N$.
If m is the index and r is the period of a, then by Theorem 1.2.2 [1], $\langle a\rangle=$ $\left\{a, a^{2}, \ldots, a^{m+r-1}\right\}$. If $m=1$, then unambiguously $\langle a\rangle$ is a group and it follows that $\langle a\rangle=U_{0}^{\langle a\rangle}$. If $m \geq 2$, then by the definition of $m a^{s} \notin a^{s}\langle a\rangle a^{s}$ for all $1 \leq$ $s<m$, whence $a^{s} \in U_{1}^{\langle a\rangle}$. The definition of r implies that $a^{m+2 r}=a^{m}$. Then since

$$
a^{m-1} a^{t} a^{m-1}=a^{m} a^{t+m-2}=a^{m+2 r} a^{t+m-2}=a^{m} a^{2 r-2+t} a^{m}
$$

for all $1 \leq t<m+r-1$ we obtain $a^{m-1}\langle a\rangle a^{m-1} \subseteq a^{m}\langle a\rangle a^{m}$. Also, since $a^{m}\langle a\rangle a^{m} \subseteq a^{m-1}\langle a\rangle a^{m-1}$, we have $a^{m} \in\left[a^{m-1}\right]_{\phi^{\langle a\rangle}}$. Since $a^{m-1} \in U_{1}^{\langle a\rangle}$, we have $a^{m} \in U_{1}^{\langle a\rangle}$ by Lemma 2.1.

Finally to complete the proof of this lemma, we have to show that $a^{m+k} \in$ $U_{1}^{\langle a\rangle}$ for all $1 \leq k<r-1$ and $r>1$. Let $1 \leq k<r-1$ and $t \in N$. Then, $a^{m+k} \in\left[a^{m}\right]_{\phi^{(a\rangle}}$ for all $1 \leq k<r-1$, since

$$
a^{m+k} a^{t} a^{m+k}=a^{m+r+k} a^{t} a^{m+r+k}=a^{m+k+1} a^{2 r-2+t} a^{m+k+1}
$$

and

$$
a^{m+k+1}\langle a\rangle a^{m+k+1} \subseteq a^{m+k}\langle a\rangle a^{m+k}
$$

Hence, since $a^{m} \in U_{1}^{\langle a\rangle}, a^{m+k} \in U_{1}^{\langle a\rangle}$ for all $1 \leq k<r-1$ by Lemma 2.1. Consequently, $\langle a\rangle=U_{1}^{\langle a\rangle}$.

Let S be a semigroup and T be a proper subsemigroup of S. We try to get an answer of the question: "if $a \in U_{i}^{S}$, is $a \in U_{i}^{T}(i=0,1)$?". The next lemma shows that the answer is yes in the case $i=0$ and T is an ideal.

Lemma 2.3. Let S be a semigroup, T be a proper ideal of S and $a \in U_{0}^{S} \cap T$. Then $[a]_{\phi^{s}}=[a]_{\phi^{T}}$ if and only if $a \in U_{0}^{T}$.

Proof. Take $a \in U_{0}^{S} \cap T$. Since $a \in U_{0}^{S}$, we have $[a]_{\phi^{S}} \subseteq a S a$. Let $b \in[a]_{\phi^{S}}$. Then since $a, b \in a S a=b S b$, it follows that there exist $x, y \in S$ such that $a=$ $b x b, b=a y a$. Hence $a, b \in T$ and also $a T a=b T b$ since T is an ideal and it follows that $b \in[a]_{\phi^{T}}$, that is, $[a]_{\phi^{S}} \subseteq[a]_{\phi^{T}}$.

Now by the hypothesis, $[a]_{\phi^{T}} \subseteq a T a \subseteq a S a$. Let $b \in[a]_{\phi^{T}}$. Then there exist $z, t \in T$ such that $b=a z a, a=b t b$ and it follows that $a S a=b S b$ which implies that $b \in[a]_{\phi^{s}}$ as desired.

Conversely, let $b \in[a]_{\phi^{T}}$. By $[a]_{\phi^{S}} \subseteq a S a$ and the hypothesis, one can get the set inclusion $[a]_{\phi^{T}} \subseteq a S a$. Then there exist $p, q \in S$ such that $b=b p b$, $a=a q a$. Therefore, since $q a, p b$ are idempotent elements and T is ideal, $a, b \in a T a$ as desired.

The next lemma shows that the equality $U_{i}^{S \times T}=U_{i}^{S} \times U_{i}^{T}(i=0,1)$ holds for $i=0$ when S and T are semigroups.
Lemma 2.4. Let S and T be semigroups. Then $U_{0}^{S \times T}=U_{0}^{S} \times U_{0}^{T}$ and $U_{1}^{S \times T}=$ $\left(U_{0}^{S} \times U_{1}^{T}\right) \cup\left(U_{1}^{S} \times U_{1}^{T}\right) \cup\left(U_{1}^{S} \times U_{0}^{T}\right)$.
Proof. Let $(a, b),(c, d) \in S \times T$. It is easily seen that

$$
(a, b) \phi^{S \times T}(c, d) \text { if and only if } a \phi^{S} c \text { and } b \phi^{T} d
$$

by the definition of multiplication on $S \times T$. This implies that $[a]_{\phi^{S}} \times[b]_{\phi^{T}}=$ $[(a, b)]_{\phi^{S \times T}}$.

Firstly, if (a, b) is an element of $U_{0}^{S \times T}$, then

$$
[a]_{\phi^{S}} \times[b]_{\phi^{T}}=[(a, b)]_{\phi^{S \times T}} \subseteq(a S a) \times(b T b),
$$

and so that $U_{0}^{S \times T} \subseteq U_{0}^{S} \times U_{0}^{T}$. Similarly, one can see that $U_{0}^{S} \times U_{0}^{T} \subseteq U_{0}^{S \times T}$, as desired.

Secondly, if (a, b) is an element of $U_{1}^{S} \times U_{1}^{T}$, then there exist $c \in[a]_{\phi^{s}}$ and $d \in$ $[b]_{\phi^{T}}$ such that $c \notin a S a$ and $d \notin b S b$, that is, $(c, d) \notin(a, b)(S \times T)(a, b)$. Also, since $[a]_{\phi^{S}} \times[b]_{\phi^{T}}=[(a, b)]_{\phi^{S \times T}}$, we get $(a, b) \in U_{1}^{S \times T}$. Similarly, $U_{1}^{S} \times U_{0}^{T}$ and $U_{0}^{S} \times U_{1}^{T}$ are subsets of $U_{1}^{S \times T}$. On the other hand if $(a, b) \in U_{1}^{S \times T}$, then there exists $(c, d) \in[(a, b)]_{\phi S \times T}$ such that either $c \notin a S a$ or $d \notin b S b$. Also, the equality $[a]_{\phi^{S}} \times[b]_{\phi^{T}}=[(a, b)]_{\phi^{S \times T}}$ holds. Thus, the proof is completed.

In the following Lemma 2.5, we get a positive answer of the question "Is the structure of the set $U_{i}^{S}(i=0,1)$ preserved under isomorphism?".
Lemma 2.5. Let S and T be semigroups and $\theta: S \rightarrow T$ be an isomorphism. Then the equality $U_{i}^{S} \theta=U_{i}^{T}(i=0,1)$ holds.

The proof of this lemma is obvious since $U_{0}^{S} \cap U_{1}^{S}=\emptyset$ and θ is an isomorphism.

3. The ϕ^{S}-class with an idempotent element

In this section, first we show that for any semigroup S, G_{e} is a group where e is an idempotent element of S. To proof of this, we need the following next lemma.

Lemma 3.1. Let S be a semigroup and e be an idempotent element of S. Then $[e]_{\phi^{s}}$ has only one idempotent element and $[e]_{\phi^{s}}$ is a subsemigroup of S.

Proof. Firstly, we show that $[e]_{\phi^{s}}$ is a semigroup. Let $a, b \in[e]_{\phi^{s}}$. By the definition of ϕ^{S}, $e S e=a S a=b S b$. Since e is idempotent, then e is the identity element of $a S a$. Thus $a^{3} e=a^{3}=e a^{3}$. It follows that $a^{6} \in a^{3} S a^{3}=$ $a^{6} S a^{6}=a^{12} S a^{12}$. Hence there exists $y \in S$ such that $a^{12} y a^{6}\left(=a^{6} y a^{12}\right)$ is the identity element of $a^{3} S a^{3}$. Further, since $e \in a S a$, there exists $x \in S$ such that $e=a x a$. It follows that $(a x) e=a x(a x a)=(a x a) x a=e(x a)$. Therefore, since $a^{2} S a^{2} \subseteq a S a$ and

$$
\begin{aligned}
a S a & =e(a S a) e \\
& =(a x a)(a S a)(a x a) \\
& =(a x) e\left(a^{2} S a^{2}\right) e(x a) \\
& =e(x a)\left(a^{2} S a^{2}\right)(a x) e \\
& =e x\left(a^{3} S a^{3}\right) x e \\
& =e x\left(a^{12} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{6}\right) x e \\
& =(e(x a))\left(a^{11} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{5}\right)((a x) e) \\
& =(a x) e\left(a^{11} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{5}\right) e(x a) \\
& =(a x a)\left(a^{10} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{4}\right)(a x a) \\
& =e\left(a^{10} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{4}\right) e \\
& =a^{2}\left(a^{8} y a^{6}\right)\left(a^{3} S a^{3}\right)\left(a^{12} y a^{2}\right) a^{2},
\end{aligned}
$$

we have $e \in a S a=a^{2} S a^{2}$. Thus there exists $t \in S$ such that $e=a^{2} t a^{2}$. Hence we get

$$
a e=a\left(a^{2} t a^{2}\right)=a^{3} t a^{2}=\left(e a^{3}\right)\left(t a^{2}\right)=(e a)\left(a^{2} t a^{2}\right)=e a e .
$$

Similarly, one can show that $e a=e a e$ which implies that $a e=e a$. Using the same arguments we have $e b=b e$. Since $e a=a e, a S a=e S e=b S b$ and e is
idempotent, we obtain

$$
\begin{aligned}
e S e & =e(e S e) e \\
& =e(a S a) e \\
& =(e a) S(a e) \\
& =(a e) S(e a) \\
& \subseteq a(e S e) \\
& \subseteq a b S b .
\end{aligned}
$$

Also, since $e b=b e$, then we get

$$
\begin{aligned}
e S e & =e(e S e) e \\
& \subseteq e(a b S b) e \\
& =(e a)(b S)(b e) \\
& =(a e)(b S)(e b) \\
& =a(b e) S e b \\
& =a b(a S) a b \\
& \subseteq a b S a b .
\end{aligned}
$$

On the other hand since $a S a=e S e=b S b$, then we have

$$
a b S a b \subseteq(e S e) b \subseteq(b S b) b \subseteq b S b \subseteq e S e
$$

which implies that $a b \in[e]_{\phi^{s}}$, as desired.
The rest of the proof of this lemma follows from the fact that ϕ^{S} separates idempotents.

Now we are ready to proof the following theorem.
Theorem 3.2. Let S be a non-regular semigroup and e be an idempotent element of S. Then $G_{e}=[e]_{\phi^{S}} \cap e S e$ is a group.

Proof. By Theorem 5.1.1 [1], one can show that any regular semigroup with only one idempotent element is a group. To prove this theorem it is enough to show that $e \in U_{1}^{S}$ and $G_{e} \neq\{e\}$.

For all $a \in G_{e}$, since $a \in e S e$ and e is an idempotent element, it is easy to see that $e a=a e=a$. Let $a, b \in G_{e} \backslash\{e\}$. Assume that there exists an element c of $[e]_{\phi^{s}} \backslash G_{e}$ such that $a b=c$, then $e c=e(a b)=(e a) b=a b=a(b e)=(a b) e=c e$, which is a contradiction by $c \in[e]_{\phi^{S}} \backslash G_{e}$. Consequently, for all $a, b \in G_{e} \backslash\{e\}$ we have $a b \in G_{e}$. Since $[e]_{\phi^{s}}$ is a semigroup by Lemma 3.1, then G_{e} is a semigroup. On the other hand since G_{e} is a regular semigroup with only one idempotent element, then G_{e} is a group. This completes the proof of this theorem.

Finally, for any semigroup S we try to identify the possible relationships between the index of $e \neq k \in[e]_{\phi^{S}}$ and $e \in U_{i}^{S}(i=0,1)$.

Notice that G_{e} in the statement of Theorem 3.2 is the \mathcal{H}-class containing e that is denoted by H_{e}.

Theorem 3.3. Let S be a semigroup and e be an idempotent element of S. If $e \neq k \in[e]_{\phi^{s}}$ has finite order, then there exists a positive integer t such that $k^{t}=e$. In particular, the index of k should be greater than or equal 3 .

Proof. Let $e \neq k \in[e]_{\phi^{s}}$. Suppose that k has finite order. Then there exist positive integers m (the index of k) and r (the period of k) such that $k^{m+r}=k^{m}$ and the order of k is $m+r-1$. By the proof of Lemma 3.1, $k S k=k^{2} S k^{2}$. Then we obtain $k^{3} \in k^{6} S k^{6}$. Thus there exists $x \in S$ such that $k^{3}=k^{6} x k^{6}$. Simple calculations show that $k^{6} x k^{3}=k^{3} x k^{6}$ is the identity element of $k S k=e S e$. Then, since e is the identity element of $e S e$, we get $e=k^{6} x k^{3}=k^{3} x k^{6}$. Further, since $k^{n} \in k S k$ for every integer $n \geq 3$,

$$
\begin{equation*}
k^{n} e=k^{n}=e k^{n} . \tag{1}
\end{equation*}
$$

We will complete the proof by investigating the following cases:
Case 1: Let $m=1$ and assume that $r=1$. Then, since $k=k^{2}$, we get $k=k^{6}=k^{3}=k^{6} x k^{6}=k^{6} x k^{3}=e$, which contradicts $k \neq e$. Hence $r \geq 2$.

In the case $r=2$ we have $k=k^{3}$. Therefore, one can obtain that $k^{2}=k^{4}=$ $k^{3} k=\left(k^{6} x k^{6}\right) k=\left(k^{6} x k^{2}\right) k=e$ from $k^{2}=k^{4}=k^{6}$.

In the case $r=3$ we have $k=k^{4}$. Since $k^{3}=k^{6}$, then $k^{3}=e$.
In the case $r \geq 4$, we have $k^{r}=k^{3} k^{r-3}=\left(k^{6} x k^{6}\right) k^{r-3}=k^{6} x k^{r+1} k^{2}=$ $k^{6} x k k^{2}=e$. Therefore $\langle k\rangle$ is a group by (1).

Case 2: Let $m=2$. Simple calculations show that for $r=1,2, k^{2}=e$ and for $r=3, k^{6}=e$. For $r \geq 4$, it follows that $k^{r}=k^{3} k^{r-3}=\left(k^{6} x k^{6}\right) k^{r-3}=$ $k^{6} x k^{r+2} k=k^{6} x k^{2} k=e$.

Case 3: Let $m=3$. For $r=1,2,3$, simple calculations show us that $k^{6}=e$. For $r \geq 4$, we obtain that $k^{r}=k^{3} k^{r-3}=\left(k^{6} x k^{6}\right) k^{r-3}=k^{6} x k^{r+3}=k^{6} x k^{3}=e$.

Case 4: If $4 \leq m \leq 6$, then there exists $0 \leq t \leq 2$ integer such that $m+t=6$. Hence $k^{6}=k^{m+t}=k^{m+r+t}$. It follows that $k^{3}=k^{6} x k^{6}=k^{6} x k^{m+r+t}=$ $\left(k^{6} x k^{6}\right) k^{r}=k^{r+3}$. This is a contradiction by the definition of m and r.

Case 5: If $m \geq 7$, then $k^{m-3}=k^{m-6} k^{3}=k^{m-6}\left(k^{6} x k^{6}\right)=k^{m} x k^{6}=$ $k^{m+r} x k^{6}=k^{m+r-6}\left(k^{6} x k^{6}\right)=k^{m+r-6} k^{3}=k^{m+r-3}$, which is a contradiction by the definition of m and r.

We have the following corollary.
Corollary 3.4. Let S be a semigroup and e be an idempotent element of S. If $e \neq k \in[e]_{\phi^{S}}$ has finite order and the index of k is 2 or 3 , then $e \in U_{1}^{S}$.

Proof. Take m and r as the index and period of k, respectively, we provide a proof for the case $m=2$ only, by the proof of Theorem 3.3 and the hypothesis. Assume that $e \in U_{0}^{S}$. Then $k \in U_{0}^{S}$ by Lemma 2.1 and the hypothesis. Hence, if $k \in e S e$, then we have

$$
\begin{equation*}
k^{n} e=k^{n}=e k^{n} \tag{2}
\end{equation*}
$$

for every integer $n \geq 1$. For $r=1$, since $k^{2}=k^{3}=e$, by the proof of Case 2 in Theorem 3.3, then $k=k e=k k^{2}=e$ by (2), which is a contradiction with $k \neq e$. For $r=2$, since $k^{2}=e$, by the proof of Case 2 in Theorem 3.3, then $k^{3}=k k^{2}=k e=k$ by (2), this is a contradiction by the definition of m and r. A similar argument gives a contradiction for the case $r \geq 3$ which completes the proof of this corollary.

References

[1] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, 1995.
[2] F. Pastijn, Regular locally testable semigroup as semigroups of quasi-ideals, Acta Math. Acad. Sci. Hungar. 36 (1980), no. 1-2, 161-166.
[3] A. Tiefenbach, Locale Unterhalbgruppen, Ph. D. Thesis, University of Vienna, 1995.
[4] _ On certain varieties of semigroups, Turkish J. Math. 22 (1998), no. 2, 145-152.
Faculty of Education
Department of Mathematics
Gazi University
06500 Teknikokullar, Ankara, Turkey
E-mail address: asevgi@gazi.edu.tr

