• Title/Summary/Keyword: Semiconductor package

Search Result 237, Processing Time 0.057 seconds

Numerical Study on Package Warpage as Structure Modeling Method of Materials for a PCB of Semiconductor Package (반도체 패키지용 PCB의 구조 모델링 방법에 따른 패키지의 warpage 수치적 연구)

  • Cho, Seunghyun;Ceon, Hyunchan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.59-66
    • /
    • 2018
  • In this paper, we analyzed the usefulness of single-structured printed circuit board (PCB) modeling by using numerical analysis to model the PCB structure applied to a package for semiconductor purposes and applying modeling assuming a single structure. PCBs with circuit layer of 3rd and 4th were used for analysis. In addition, measurements were made on actual products to obtain material characteristics of a single structure PCB. The analysis results showed that if the PCB was modeled in a single structure compared to a multi-layered structure, the warpage analysis results resulting from modeling the PCB structure would increase and there would be a significant difference. In addition, as the circuit layer of the PCB increased, the mechanical properties of the PCB, the elastic coefficient and inertia moment of the PCB increased, decreasing the package's warpage.

Electrolytic silane deposition to improve the interfacial adhesion Ag and epoxy substrate (Ag/에폭시간 계면 접착력 향상을 위한 전해 실란 처리)

  • Wonhyo Kong;Gwangryeol Park;Hojun Ryu;Inseob Bae;Sung-il Kang;Seunghoe Choe
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.77-83
    • /
    • 2023
  • The reliability of leadframe-based semiconductor package depends on the adhesion between metal and epoxy molding compound (EMC). In this study, the Ag surface was electrochemically treated in a solution containing silanes in order to improve the adhesion between Ag and epoxy substrate. After electrochemical treatment, the thin silane layer was deposited on the Ag surface, whereby the peel strength between Ag and epoxy substrate was clearly improved. The improvement of peel strength depended on the functional group of silane, implying the chemical linkage between Ag and epoxy.

The Thermal Characterization of Chip Size Packages

  • Park, Sang-Wook;Kim, Sang-Ha;Hong, Joon-Ki;Kim, Deok-Hoon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.09a
    • /
    • pp.121-145
    • /
    • 2001
  • Chip Size Packages (CSP) are now widely used in high speed DRAM. The major driving farce of CSP development is its superior electrical performance than that of conventional package. However, the power dissipation of high speed DRAM like DDR or RAMBUS DRAM chip reaches up to near 2W. This fact makes the thermal management methods in DRAM package be more carefully considered. In this study, the thermal performances of 3 type CSPs named $\mu-BGA$^{TM}$$ $UltraCSP^{TM}$ and OmegaCSP$^{TM}$ were measured under the JEDEC specifications and their thermal characteristics were of a simulation model utilizing CFD and FEM code. The results show that there is a good agreement between the simulation and measurement within Max. 10% of $\circledM_{ja}$. And they show the wafer level CSPs have a superior thermal performance than that of $\mu-BGA.$ Especially the analysis results show that the thermal performance of wafer level CSPs are excellent fur modulo level in real operational mode without any heat sink.

  • PDF

A Study on Technology Trend of Power Semiconductor Packaging using Topic model (토픽모델을 이용한 전력반도체 패키징 기술 동향 연구)

  • Park, Keunseo;Choi, Gyunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • Analysis of electric semiconductor packaging technology for electric vehicles was performed. Topic modeling using LDA technique was performed by collecting valid patents by deriving valid patents. It was classified into 20 topics, and the definition of technology was defined through extracted words for each topic. In order to analyze the trend of each topic, the trend of power semiconductor packaging technology was analyzed by deriving hot and cold topics by topic through regression analysis on frequency by year. The package structure technology according to the withstand voltage, the input/output-related control technology and the heat dissipation technology were derived as the hot topic technology, and the inductance reduction technology was derived as the cold topic technology.

A Study of Thermo-Mechanical Behavior and Its Simulation of Silicon Nitride Substrate on EV (Electronic Vehicle)'s Power Module (전기자동차 파워모듈용 질화규소 기판의 열기계적 특성 및 열응력 해석에 대한 연구)

  • Seo, Won;Jung, Cheong-Ha;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.149-153
    • /
    • 2019
  • The technology of electronic packaging among semiconductor technologies is evolving as an axis of the market in its own field beyond the simple assembly process of the past. In the field of electronic packaging technology, the packaging of power modules plays an important role for green electric vehicles. In this power module packaging, the thermal reliability is an important factor, and silicon nitride plays an important part of package substrates, Silicon nitride is a compound that is not found in nature and is made by chemical reaction between silicon and nitrogen. In this study, this core material, silicon nitride, was fabricated by reaction bonded silicon nitride. The fabricated silicon nitride was studied for thermo-mechanical properties, and through this, the structure of power module packaging was made using reaction bonded silicon nitride. And the characteristics of stress were evaluated using finite element analysis conditions. Through this, it was confirmed that reaction bonded silicon nitride could replace the silicon nitride as a package substrate.

Trends of Power Semiconductor Device (전력 반도체의 개발 동향)

  • Yun, Chong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-6
    • /
    • 2004
  • Power semiconductor devices are being compact, high performance and intelligent thanks to recent remarkable developments of silicon design, process and related packaging technologies. Developments of MOS-gate transistors such as MOSFET and IGBT are dominant thanks to their advantages on high speed operation. In conjunction with package technology, silicon technologies such as trench, charge balance and NPT will support future power semiconductors. In addition, wide band gap material such as SiC and GaN are being studies for next generation power semiconductor devices.

  • PDF

Post Silicon Management of On-Package Variation Induced 3D Clock Skew

  • Kim, Tak-Yung;Kim, Tae-Whan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.139-149
    • /
    • 2012
  • A 3D stacked IC is made by multiple dies (possibly) with heterogeneous process technologies. Therefore, die-to-die variation in 2D chips renders on-package variation (OPV) in a 3D chip. In spite of the different variation effect in 3D chips, generally, 3D die stacking can produce high yield due to the smaller individual die area and the averaging effect of variation on data path. However, 3D clock network can experience unintended huge clock skew due to the different clock propagation routes on multiple stacked dies. In this paper, we analyze the on-package variation effect on 3D clock networks and show the necessity of a post silicon management method such as body biasing technique for the OPV induced 3D clock skew control in 3D stacked IC designs. Then, we present a parametric yield improvement method to mitigate the OPV induced 3D clock skew.

Wafer Burn-in Method of SRAM for Multi Chip Package

  • Kim, Hoo-Sung;Kim, Je-Yoon;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.138-142
    • /
    • 2004
  • This paper presents the improved bum-in method for the reliability of SRAM in Multi Chip Package (MCP). Semiconductor reliability is commonly improved through the bum-in process. Reliability problem is more significant in MCP that includes over two chips in a package, because the failure of one chip (SRAM) has a large influence on the yield and quality of the other chips - Flash Memory, DRAM, etc. Therefore, the quality of SRAM must be guaranteed. To improve the quality of SRAM, we applied the improved wafer level bum-in process using multi cells selection method in addition to the previously used methods. That method is effective in detecting special failure. Finally, with the composition of some kind of methods, we could achieve the high quality of SRAM in Multi Chip Package.