• Title/Summary/Keyword: Semiconductor amplifier

Search Result 346, Processing Time 0.027 seconds

A novel 10 Gbit/s all-optical NOR logic gate (새로운 10 Gbit/s 전광 NOR 논리 게이트)

  • Byun, Young-Tae;Kim, Jae-Heon;Jeon, Young-Min;Lee, Seok;Woo, Duk-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.530-534
    • /
    • 2003
  • A novel all-optical NOR gate is proposed and demonstrated for the first time by use of gain saturation in a semiconductor optical amplifier (SOA). It is operated by the nonlinearity of the SOA gain. Hence, to obtain sufficient gain saturation of the SOA, pump signals are amplified by an Er-doped fiber amplifier at the input of the SOA. The operation characteristics of the all-optical NOR gate are successfully measured at 10 Gbit/s.

Design of a wide dynamic range and high-speed logarithmic amplifier (넓은 동작영역과 고속특성을 갖는 로그 증폭기의 설계)

  • Park, Ki-Won;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.97-103
    • /
    • 2002
  • In this paper, a Logarithmic Video Amplifier(LVA) for radar system or satellite communications is described. The proposed LVA is composed of a input stage, amplification stage, and output stage. As well as a novel series-parallel architecture is proposed for the purpose of wide dynamic range and high speed operation, a newly developed input stage is designed in order to control the voltage level between LVA and detector diode. The LVA is fabricated with a 1.5um 2-poly 2-metal n-well Bi-CMOS technology, and the chip area is 1310 um x 1540 um. From the experimental results, it consumes 190 mW at 10V power supply, the chip has 60 dB dynamic range and 100ns falling time.

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo;Roh, Jeongjin
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.

A Fully-Integrated Low Power K-band Radar Transceiver in 130nm CMOS Technology

  • Kim, Seong-Kyun;Cui, Chenglin;Kim, Byung-Sung;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.426-432
    • /
    • 2012
  • A fully-integrated low power K-band radar transceiver in 130 nm CMOS process is presented. It consists of a low-noise amplifier (LNA), a down-conversion mixer, a power amplifier (PA), and a frequency synthesizer with injection locked buffer for driving mixer and PA. The receiver front-end provides a conversion gain of 19 dB. The LNA achieves a power gain of 15 dB and noise figure of 5.4 dB, and the PA has an output power of 9 dBm. The phase noise of VCO is -90 dBc/Hz at 1-MHz offset. The total dc power dissipation of the transceiver is 142 mW and the size of the chip is only $1.2{\times}1.4mm^2$.

X Band 7.5 W MMIC Power Amplifier for Radar Application

  • Lee, Kyung-Ai;Chun, Jong-Hoon;Hong, Song-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.139-142
    • /
    • 2008
  • An X-band MMIC power amplifier for radar application is developed using $0.25-{\mu}m$ gate length GaAs pHEMT technology. A bus-bar power combiner at output stage is used to minimize the combiner size and to simplify bias network. The fabricated power amplifier shows 38.75 dBm (7.5 Watt) Psat at 10 GHz. The chip size is $3.5\;mm{\times}3.9\;mm$.

An analytical consideration of the MOS type field-effect transistor differential amplifier (MOS형 전계효과 트랜지스터 차동증폭기에 관한 소고)

  • 정만영
    • 전기의세계
    • /
    • v.14 no.6
    • /
    • pp.1-7
    • /
    • 1965
  • This paper provides the analysis of the differential amplifier using the insulated gate, metala-oxide-semiconductor type field-effect-transistor(MOS FET), for its active element and the power drift of the amplifer. From these analytical considerations some design standardsn were found for the MOS FET differential amplifier available for the measurement of the very small current (pico-ampare range). A differential amplifier was designed and built in the view of above considerations. Its equivalent input gate voltages of the thermal drift and the power drift were 0.57mV/.deg. C in the range 25.deg. C-60.deg. C and 8.8mV/V in the range of 20% drift of its orginal value, respectively.

  • PDF

A 4W GaAs Power Amplifier MMIC for Ku-band Satellite Communication Applications

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.501-505
    • /
    • 2015
  • In this paper, we demonstrated a 4W power amplifier monolithic microwave integrated circuit (MMIC) for Ku-band satellite communication applications. The used device technology relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) process. The 4W power amplifier MMIC has linear gain of over 30 dB and saturated output power of over 36.1 dBm in the frequency range of 13.75 GHz ~ 14.5 GHz. Power added efficiency (PAE) is over 30 %.

Integratable Micro-Doherty Transmitter

  • Lee, Jae-Ho;Kim, Do-Hyung;Burm, Jin-Wook;Park, Jin-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.275-280
    • /
    • 2006
  • We propose Doherty power amplifier structure which can be integrated in Silicon RF ICs. Doherty power amplifiers are widely used in RF transmitters, because of their high Power Added Efficiency (PAE) and good linearity. In this paper, it is proposed that a method to replace the quarter wavelength coupler with IQ up-conversion mixers to achieve 90 degree phase shift, which allows on-chip Doherty amplifier. This idea is implemented and manufactured in CMOS 5 GHz band direct-conversion RF transmitter. We measured a 3dB improvement output RF power and linearity.

An Inherently dB-linear All-CMOS Variable Gain Amplifier

  • Kwon, Ji-Wook;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.336-343
    • /
    • 2011
  • This paper introduces a simple variable gain amplifier (VGA) structure that shows an inherently dB-linear gain control property. Requiring no additional components for dB-linear control, the structure is compact and power efficient. The designed two-stage VGA shows a gain control range of 60dB with the gain error in the range of ${\pm}0.4$ dB. The power consumption including the output buffer is 20.4 mW from 1.2 V supply voltage with bandwidth of 630 MHz. The prototype was fabricated in a 0.13 ${\mu}m$ CMOS process and the VGA core occupies 0.06 $mm^2$.

Noise Suppression of Spectrum-Sliced WDM-PON Light Sources Using FP-LD

  • Lee, Woo-Ram;Cho, Seung-Hyun;Park, Jae-Dong;Kim, Bong-Kyu;Kim, Byoung-Whi
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.334-336
    • /
    • 2005
  • We improved the performance of the spectrum-sliced light source for wavelength-division-multiplexed passive optical networks by employing a Fabry-Perot laser diode(FP-LD). We found that the FP-LDs can suppress the intensity noise as significantly as using a gain-saturated semiconductor optical amplifier. The transmission characteristics were measured and analyzed in both conditions with and without employing an FP-LD.

  • PDF