• Title/Summary/Keyword: Semiconductor Defect

Search Result 259, Processing Time 0.032 seconds

Simple and Clean Transfer Method for Intrinsic Property of Graphene

  • Choe, Sun-Hyeong;Lee, Jae-Hyeon;;Kim, Byeong-Seong;Choe, Yun-Jeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.659-659
    • /
    • 2013
  • Recently, graphene has been intensively studied due to the fascinating physical, chemical and electrical properties. It shows high carrier mobility, high current density, and high thermal conductivity compare with conventional semiconductor materials even it has single atomic thickness. Especially, since graphene has fantastic electrical properties many researchers are believed that graphene will be replacing Si based technology. In order to realize it, we need to prepare the large and uniform graphene. Chemical vapor deposition (CVD) method is the most promising technique for synthesizing large and uniform graphene. Unfortunately, CVD method requires transfer process from metal catalyst. In transfer process, supporting polymer film (Such as poly (methyl methacrylate)) is widely used for protecting graphene. After transfer process, polymer layer is removed by organic solvents. However, it is impossible to remove it completely. These organic residues on graphene surface induce quality degradation of graphene since it disturbs movement of electrons. Thus, in order to get an intrinsic property of graphene completely remove of the organic residues is the most important. Here, we introduce modified wet graphene transfer method without PMMA. First of all, we grow the graphene from Cu foil using CVD method. And then, we deposited several metal films on graphene for transfer layer instead of PMMA. Finally, we fabricate graphene FET devices. Our approaches show low defect density and non-organic residues in comparison with PMMA coated graphene through Raman spectroscopy, SEM and AFM. In addition, clean graphene FET shows intrinsic electrical characteristic and high carrier mobility.

  • PDF

Crystal Molecular Orbital Calculation of the Lanthanum Nickel Oxide by Means of the Micro-Soft Fortran (마이크로-소프트 포트란을 이용한 복합 산화물 결정의 분자 궤도함수 계산)

  • Koo, Hyun-Joo;Lee, Kwang-Soon;Ahn, Woon-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.685-691
    • /
    • 1995
  • EHMACC and EHPC programs written in VAX version to calculate the tight-binding extended Huckel method is converted into the micro-soft fortran available to PC. The band calculation of LaNiO3 unit cell and extended ($2{\times}2{\times}1$) cell with perovskite structure is made by the PC/386 and PC/486. The calculation is also made for the DOS and the COOP. It is supposed that the electronic property of $LaNiO_3$ is semiconductor along to the ${\Gamma}{\rightarrow}H,\;H{\rightarrow}N,\;and\;N{\rightarrow}{\Gamma}(2D)$ direction with band gap about 0u.35 eV, while metal property in ${\Gamma}{\rightarrow}P\;and\;P{\rightarrow}N(3D)$ direction. The oxygen atom property in $LaNiO_3$ is more effectively affected by oxygen atom position than defect of nickel atom.

  • PDF

Scanning Backlight Driver for Mercury Free Flat Fluorescent Lamp (무수은 면광원 램프용 Scanning Backlight 구동회로)

  • Oh, Eun-Tae;Jung, Yong-Min;Lee, Kyung-In;Yoo, Ho-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • A lamp which is currently employed to LCD(Liquid Crystal Display) Backlight is almost CCFL(Cold Cathod Fluorescent Lamp) and EEFL(External Electrode Fluorescent Lamp). However, the use of these lamps is being restricted as RoHS(the Restriction of the use of certain Hazardous Substances in electrical and electronic equipment) regulation is gradually reinforced. According to this situation, the manufacturing of a lamp which doesn't use mercury is unescapable. Moreover, LCD TV has a defect which take place Motion Blur phenomenon due to response time of LC(Liquid Crystal), and Hold-type characteristic which only exists in LCD differently to CRT, PDP. In this paper, an inverter is proposed to drive a plane light source lamp which is not containing mercury. Driving circuit of proposed inverter is simple because the number of semiconductor device and magnetic device is reduced by using forward topology. Also, Motion Blur phenomenon is decreased by dividing the plane light source lamp to six block along vertical direction, and scanning. Finally, we proved usefulness of proposed inverter through experiment.

A Study on Rotational Alignment Algorithm for Improving Character Recognition (문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구)

  • Jin, Go-Whan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.79-84
    • /
    • 2019
  • Video image based technology is being used in various fields with continuous development. The demand for vision system technology that analyzes and discriminates image objects acquired through cameras is rapidly increasing. Image processing is one of the core technologies of vision systems, and is used for defect inspection in the semiconductor manufacturing field, object recognition inspection such as the number of tire surfaces and symbols. In addition, research into license plate recognition is ongoing, and it is necessary to recognize objects quickly and accurately. In this paper, propose a recognition model through the rotational alignment of objects after checking the angle value of the tilt of the object in the input video image for the recognition of inclined objects such as numbers or symbols marked on the surface. The proposed model can perform object recognition of the rotationally sorted image after extracting the object region and calculating the angle of the object based on the contour algorithm. The proposed model extracts the object region based on the contour algorithm, calculates the angle of the object, and then performs object recognition on the rotationally aligned image. In future research, it is necessary to study template matching through machine learning.

Influence of Plasma Corrosion Resistance of Y2O3 Coated Parts by Cleaning Process (세정공정에 따른 Y2O3 코팅부품의 내플라즈마성 영향)

  • Kim, Minjoong;Shin, Jae-Soo;Yun, Ju-Young
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.6
    • /
    • pp.365-370
    • /
    • 2021
  • In this research, we proceeded with research on plasma resistance of the cleaning process of APS(Atmospheric Plasma Spray)-Y2O3 coated parts used for semiconductor and display plasma process equipment. CF4, O2, and Ar mixed gas were used for the plasma environment, and respective alconox, surfactant, and piranha solution was used for the cleaning process. After APS-Y2O3 was exposed to CF4 plasma, the surface changed from Y2O3 to YF3 and a large amount of carbon was deposited. For this reason, the plasma corrosion resistance was lowered and contamination particles were generated. We performed a cleaning process to remove the defect-inducing surface YF3 layer and carbon layer. Among three cleaning solutions, the piranha cleaning process had the highest detergency and the alconox cleaning process had the lowest detergency. Such results could be confirmed through the etching amount, morphology, composition, and accumulated contamination particle analysis results. Piranha cleaning process showed the highest detergency, but due to the very large thickness reduction, the base metal was exposed and a large number of contaminated particles were generated. In contrast, the surfactant cleaning process exhibit excellent properties in terms of surface detergency, etching amount, and accumulated contamination particle analysis.

Electrical Conductivity of the Solid Solutions X $ZrO_2+ (1-X) Yb_2O_3; 0.01{\leq}X{\leq}0.09$

  • Choi Byoung Ki;Jang Joon Ho;Kim, Seong Han;Kim, Hong Seok;Park, Jong Sik;Kim Yoo Young;Kim, Don;Lee Sung Han;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 1992
  • $ZrO_2-dopedYb_2O_3solid$ solutions containing 1, 3, 5, 7 and 9 mol% $ZrO_2were$ synthesized from spectroscopically pure $Yb_2O_3$ and $ZrO_2$ powders and found to be rare earth C-type structure by XRD technique. Electrical conductivities were measured as a function of temperatures from 700 to $1050^{\circ}C$ and oxygen partial pressures from 1${\times}$$10^-5$ to 2${\times}$ $10^-1$atm. The electrical conductivities depend simply on temperature and the activation energies are determined to be 1.56-1.68 $_eV$. The oxygen partial pressure dependence of the electrical conductivity shows that the conductivity increases with increasing oxygen partial pressure, indicating p-type semiconductor. The $PO_2$ dependence of the system is nearly power of 1/4. It is suggested from the linearity of the temperature dependence of electrical conductivity and only one value of 1/n that the solid solutions of the system have single conduction mechanism. From these results, it is concluded that the main defects of the system are negatively doubly charged oxygen interstitial in low. $ZrO_2doping$ level and negatively triply charged cation vacancy in high doping level and the electrical conduction is due to the electronic hole formed by the defect structure.

Mechanistic investigations on emission characteristics from g-C3N4, gC3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy

  • Sharma, Aditya;Varshney, Mayora;Chae, Keun Hwa;Won, Sung Ok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1458-1464
    • /
    • 2018
  • An improved method for the preparation of g-$C_3N_4$ is described. Currently, heating (> $400^{\circ}C$) of urea is the common method used for preparing the g-$C_3N_4$. We have found that sonication of melamine in $HNO_3$ solution, followed by washing with anhydrous ethanol, not only reduce the crystallite size of g-$C_3N_4$ but also facilitate intriguing electronic structure and photoluminescence (PL) properties. Moreover, loading of metal (Pt and Ag) nanoparticles, by applying the borohydride reduction method, has resulted in multicolor-emission from g-$C_3N_4$. With the help of PL spectra and local electronic structure study, at C K-edge, N K-edge, Pt L-edge and Ag K-edge by X-ray absorption spectroscopy (XAS), a precise mechanism of tunable luminescence is established. The PL mechanism ascribes the amendments in the transitions, via defect and/or metal states assimilation, between the ${\pi}^*$ states of tris-triazine ring of g-$C_3N_4$ and lone pair states of nitride. It is evidenced that interaction between the C/N 2p and metal 4d/5d orbitals of Ag/Pt has manifested a net detraction in the ${\delta}^*{\rightarrow}LP$ transitions and enhancement in the ${\pi}^*{\rightarrow}LP$ and ${\pi}^*{\rightarrow}{\pi}$ transitions, leading to broad PL spectra from g-$C_3N_4$ organic semiconductor compound.

Halide Perovskite Single Crystals (할라이드 페로브스카이트 단결정)

  • Choi, Jin San;Jo, Jae Hun;Woo, Do Hyun;Hwang, Young-Hun;Kim, Ill Won;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.283-295
    • /
    • 2021
  • For the last decades, a research hotspot for the halide perovskites (HPs) is now showing great progress in terms of improving efficiency for numerous photovoltaic devices (PVDs). However, it still faces challenges in the case of long-term stability in the air atmosphere. Defect-free high-quality HP single crystals show their promising properties for the remarkable development of highly efficient and stable PVDs. Here, we summarize the growth processing routes for the stable HP single crystals as well as briefly discuss the pros and cons of those well-established synthesis routes. Furthermore, we briefly include the comparison note between the HP single crystals and polycrystalline perovskite films regarding their device applications. Based on the future progress, the review concludes subjective perspectives and current challenges for the development of HPs high-quality PVDs.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Mixed Ionic and Electronic Conductivity of Lanthanum Sesquioxide (산화란타늄의 이온 및 전자전도도)

  • Keu Hong Kim;Chang Kwon Kang;Jong Hwan Lee;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.301-307
    • /
    • 1987
  • The electrical conductivity of highly pure polycrystalline sample of $La_2O_3$ has been measured at temperatures from $600^{\circ}C$ to $1,050^{\circ}C$ and oxygen pressure range of $1{\times}10^{-6}$ torr to $1{\times}10^2$ torr. The defect structure and semiconductor type are investigated by measuring the temperature and oxygen pressure dependences of electrical conductivity. Sintered $La_2O_3$ exhibits the electrical conductivities in the range of $1{\times}10^{-9}\;to\;1{\times}10^{-3}\;ohm^{-1}{\cdot}cm^{-1}$ under the above oxygen pressures. The oxygen pressure dependences on electrical conductivity are characterized by 5.3 at $1,000^{\circ}C$ and 5.7 at $700^{\circ}C$ and more higher values of 9∼14 below $700^{\circ}C$. The increase in n value with decreasing temperature indicates that a simple conduction mechanism does not exist in this material. The conduction carriers are not metal vacancy but oxygen ion at lower pressures. The conduction data indicate a significant ionic conduction at lower temperatures and electronic conduction at higher temperatures.

  • PDF