DOI QR코드

DOI QR Code

Mechanistic investigations on emission characteristics from g-C3N4, gC3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy

  • Sharma, Aditya (Advanced Analysis Centre, Korea Institute of Science and Technology (KIST)) ;
  • Varshney, Mayora (Advanced Analysis Centre, Korea Institute of Science and Technology (KIST)) ;
  • Chae, Keun Hwa (Advanced Analysis Centre, Korea Institute of Science and Technology (KIST)) ;
  • Won, Sung Ok (Advanced Analysis Centre, Korea Institute of Science and Technology (KIST))
  • Received : 2018.06.03
  • Accepted : 2018.08.30
  • Published : 2018.11.30

Abstract

An improved method for the preparation of g-$C_3N_4$ is described. Currently, heating (> $400^{\circ}C$) of urea is the common method used for preparing the g-$C_3N_4$. We have found that sonication of melamine in $HNO_3$ solution, followed by washing with anhydrous ethanol, not only reduce the crystallite size of g-$C_3N_4$ but also facilitate intriguing electronic structure and photoluminescence (PL) properties. Moreover, loading of metal (Pt and Ag) nanoparticles, by applying the borohydride reduction method, has resulted in multicolor-emission from g-$C_3N_4$. With the help of PL spectra and local electronic structure study, at C K-edge, N K-edge, Pt L-edge and Ag K-edge by X-ray absorption spectroscopy (XAS), a precise mechanism of tunable luminescence is established. The PL mechanism ascribes the amendments in the transitions, via defect and/or metal states assimilation, between the ${\pi}^*$ states of tris-triazine ring of g-$C_3N_4$ and lone pair states of nitride. It is evidenced that interaction between the C/N 2p and metal 4d/5d orbitals of Ag/Pt has manifested a net detraction in the ${\delta}^*{\rightarrow}LP$ transitions and enhancement in the ${\pi}^*{\rightarrow}LP$ and ${\pi}^*{\rightarrow}{\pi}$ transitions, leading to broad PL spectra from g-$C_3N_4$ organic semiconductor compound.

Keywords

Acknowledgement

Supported by : Korea Institute of Science and Technology, Seoul, Korea (KIST)

References

  1. X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596-1606. https://doi.org/10.1021/cs300240x
  2. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Nat. Commun. 3 (2012) 1139. https://doi.org/10.1038/ncomms2152
  3. J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, ACS Appl. Mater. Interfaces 6 (2014) 16449. https://doi.org/10.1021/am502925j
  4. H.B. Fang, Y. Luo, Y.Z. Zheng, W. Ma, X. Tao, Ind. Eng. Chem. Res. 55 (2016) 4506-4514. https://doi.org/10.1021/acs.iecr.6b00041
  5. R.B.N. Baig, S. Verma, M.N. Nadagouda, R. Varma, Sci. Rep. 6 (2016) 39387. https://doi.org/10.1038/srep39387
  6. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Sci. Rep. 3 (2013) 1943. https://doi.org/10.1038/srep01943
  7. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Nat. Commun. 5 (2014) 3783. https://doi.org/10.1038/ncomms4783
  8. Y. Yuan, L. Zhang, J. Xing, M.I.B. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genc, R.D. Borkowski, J. Arbiol, Q. Xiong, Nanoscale 7 (2015) 12343-12350. https://doi.org/10.1039/C5NR02905H
  9. S. Lianga, Y. Zhoua, Z. Caia, C. She, Appl. Organomet. Chem. 30 (2016) 932-938. https://doi.org/10.1002/aoc.3523
  10. A. Wang, C. Lee, H. Bian, Z. Li, Y. Zhan, J. He, Y. Wang, J. Lu, Y.Y. Li, Part. Part. Syst. Char. 34 (2017) 1600258. https://doi.org/10.1002/ppsc.201600258
  11. G.F. Yanga, Q. Zhang, J. Wang, Y.N. Lu, P. Chen, Z.L. Wu, S.M. Gao, G.Q. Che, Rev. Phys. 1 (2016) 101-119. https://doi.org/10.1016/j.revip.2016.06.001
  12. D. Min, D. Park, J. Jang, K. Lee, O. Nam, Sci. Rep. 5 (2015) 17372. https://doi.org/10.1038/srep17372
  13. Z. Xie, Z. Yin, Y. Wu, C. Liu, X. Hao, Q. Du, X. Xu, Sci. Rep. 7 (2017) 12146. https://doi.org/10.1038/s41598-017-12083-2
  14. Y.B. Shahar, F. Scotognella, I. Kriegel, L. Moretti, G. Cerullo, E. Rabani, U. Banin, Nat. Commun. 7 (2016) 10413. https://doi.org/10.1038/ncomms10413
  15. S. Lerch, B.M. Reinhard, Nat. Commun. 9 (2018) 1608. https://doi.org/10.1038/s41467-018-04066-2
  16. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Sci. Rep. 5 (2015) 10160. https://doi.org/10.1038/srep10160
  17. A. Sharma, M. Varshney, S.S. Nanda, H.J. Shin, N.D. Kim, D.K. Yi, K.H. Chae, S.O. Won, Chem. Phys. Lett. 698 (2018) 85. https://doi.org/10.1016/j.cplett.2018.03.010
  18. T.Y. Jeon, S.K. Kim, N. Pinna, A. Sharma, J. Park, S.Y. Lee, H. Ch Lee, S.W. Kang, H.K. Lee, H.H. Lee, Chem. Mater. 28 (2016) 1879-1887. https://doi.org/10.1021/acs.chemmater.6b00103
  19. M. Varshney, A. Sharma, H.J. Shin, H.H. Lee, T.Y. Jeon, B.H. Lee, K.H. Chae, S.O. Won, J. Phys. Chem. Solids 110 (2017) 187-194. https://doi.org/10.1016/j.jpcs.2017.06.012
  20. A. Sharma, M. Varshney, H.J. Shin, K.H. Chae, S.O. Won, Spectrochim. Acta A Mol. Biomol. Spectrosc. 173 (2017) 549-555. https://doi.org/10.1016/j.saa.2016.10.006
  21. A. Sharma, M. Varshney, W.C. Lim, H.J. Shin, J.P. Singh, S.O. Won, K.H. Chae, Phys. Chem. Chem. Phys. 19 (2017) 6397-6405. https://doi.org/10.1039/C6CP08301C
  22. A. Sharma, M. Varshney, H.J. Shin, K.H. Chae, S.O. Won, RSC Adv. 7 (2017) 52543-52554. https://doi.org/10.1039/C7RA10341G
  23. B. Ravel, M. Newville, J. Synchrotron Radiat. 12 (2005) 537. https://doi.org/10.1107/S0909049505012719
  24. B. Chai, X. Liao, F. Song, H. Zhou, Dalton Trans. 43 (2014) 982-989. https://doi.org/10.1039/C3DT52454J
  25. N. Wang, H. Fan, J. Sun, Z. Han, J.D.S. Ai, Carbon 109 (2016) 141. https://doi.org/10.1016/j.carbon.2016.08.004
  26. M. Tahir, N. Mahmood, J. Zhu, A. Mahmood, F.K. Butt, S. Rizwan, I. Aslam, M. Tanveer, F. Idrees, I. Shakir, C. Cao, Y. Hou, Sci. Rep. 5 (2015) 12389. https://doi.org/10.1038/srep12389
  27. Q. Chen, Y. Zhao, X. Huang, N. Chen, L. Qu, J. Mater. Chem. A 3 (2015) 6761. https://doi.org/10.1039/C5TA00734H
  28. J.H. Lee, J. Ryu, J.Y. Kim, S.W. Nam, J.H. Han, T.H. Lim, S. Gautam, K.H. Chae, C.W. Yoon, J. Mater. Chem. A. 2 (2014) 9490. https://doi.org/10.1039/c4ta01133c
  29. H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, L. Dai, B. Liu, Sci. Adv. 2 (2016) e1501122. https://doi.org/10.1126/sciadv.1501122
  30. J. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher, T.J.K. Brenner, Adv. Opt. Mater. 3 (2015) 913-917. https://doi.org/10.1002/adom.201500019
  31. G.M. Kimball, A.M. Muller, N.S. Lewis, H.A. Atwater, Appl. Phys. Lett. 95 (2009) 112103. https://doi.org/10.1063/1.3225151
  32. M.S. Niasari, M.R.L. Estarki, F. Davar, Inorg. Chim. Acta. 369 (2009) 3677.

Cited by

  1. Structural and electronic structure investigations on sonication based synthesized graphene oxide and reduced-graphene oxide nano-sheets vol.94, pp.12, 2019, https://doi.org/10.1088/1402-4896/ab3868
  2. Construction of a 2D/2D heterojunction via integrating MoS2 on Co-doped g-C3N4 to improve photocatalytic hydrogen evolution under visible light irradiation vol.45, pp.29, 2018, https://doi.org/10.1039/d1nj01973b
  3. Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs3Bi2Br9 Lead‐Free Perovskite Derivative by g‐C3N vol.31, pp.46, 2021, https://doi.org/10.1002/adfm.202104428