• Title/Summary/Keyword: Section Tables

Search Result 57, Processing Time 0.029 seconds

Monte Carlo Resonance Treatment for the Deterministic Transport Lattice Codes

  • Kim Kang-Seog;Lee Chung Chan;Chang Moon Hee;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.581-595
    • /
    • 2003
  • Transport lattice codes require the resonance integral tables for the resonant nuclides where the resonance integral is a function of the background cross section and can be prepared through a special program solving the slowing down equation. In case the cross section libraries do not include the resonance integral table for the resonant nuclides, the computational prediction produces a large error. We devised a new method using a Monte Carlo calculation for the effective resonance cross sections to solve this problem provisionally. We extended this method to obtain the resonance integral table for general purpose. The MCNP code is used for the effective resonance integrals and the LIBERTE code for the effective background cross sections. We modified the HELIOS library with the effective cross sections and the resonance integral tables obtained by the newly developed Monte Carlo method, and performed sample calculations using HELIOS and LIBERTE. The results showed that this method is very effective for the resonance treatment.

Content Analysis of Food & Nutrition Section in Middle School Textbooks -Home Economics, Physical Education and Science- (중학교 교과서 식생활 내용분석 -가정, 체육, 과학을 중심으로-)

  • 이영숙;김영남
    • Journal of Korean Home Economics Education Association
    • /
    • v.12 no.3
    • /
    • pp.53-63
    • /
    • 2000
  • The purpose of this study was quantitative and qualitative contents analysis of food and nutrition section in middle school textbooks of home economics, physical education and science. As a quantitative approach numbers of sentence lines tables, figures, photos, activities, and exercises were counted. As a qualitative approach, types of explanations were categorized by 7 criteria, and commons and differences of the contents of those subjects were compared. The conclusions of this study were summarized as follows: 1) Contents of food and nutrition section were divided into nutrients. water. energy, food groups, and nutritional problems. When average sentence lines of each were compared, those of nutrients were the longest in all 3 subjects. 2) When compared the numbers of tables, figures, and photos in 3 subjects of textbooks, there were more figures in home economics and science, and more tables in physical education. 3) There were more activities and exercises in home economics an science than in physical education. 4) The D(sentences with table) or E type(sentences with figure) was adapted for the explanation of nutrients functions, recommended dietary allowance, food sources, food groups, eating habits, and weight control in home economics: nutritions functions and energy metabolism in physical education : and digestion, body constituents, energy metabolism, and detection of nutrients in science. 5) Contents about classification and functions of nutrients. food sources deficiency water, energy contents of nutrients and obesity were shown in all 3 subjects. Food groups and eating habits were explained in detail in home economics whereas digestion of nutrients in the digestive tracts were explained in detail in science. Recommended dietary allowance for Koreans and basic food groups revised in 1995 were presented in home economics, whereas those revised in 1989 were presented in physical education. To avoid confusion, recommended dietary allowance for Koreans and food groups presented in physical education tex should be updated.

  • PDF

Design of Door Seal Section with Optimal Reaction Force (최적반력을 가지는 도어 씨일의 단면설계)

  • 한근조;박영철;심재준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.165-175
    • /
    • 2000
  • In order to improve the function of a door seal, its section design technique is discussed in this study, Its roles are prevention of an inflow of dusts, noise interception, insulation, wateproof, and the vibroisolating action which reduces vibration between the body and the door of a car while running, and the buffer action which sustain the proper reacting force as the door is closed. In this study, the optimal cross section of a door seal is designed using nonlinear finite element analysis (commercial finete element analysis program EASi-SEAL) and tables of orthogonal arralys with respect to relations between door and door seal to secure the satisfactory airtight property with the minimum force to shut the door.

  • PDF

Measurement and Analysis of Sheath Circulating Current in Domestic Underground Transmission Cables (국내 송전 케이블 시스 순환전류 실측 및 분석)

  • 하체웅;김정년;이수길;김동욱;이종범;강지원
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.193-200
    • /
    • 2003
  • The use of underground transmission tables has continuously increased in densely inhabited urban and suburban area. Due to a increasing demand of underground cables, two or more circuits are installed in parallel for several kilometers. It, however, has not been realized that the sheath circulating current is generated in the system where a large number of cables are laid in the same route. In this paper, Author studied diversely the sheath circulating current on underground cables depending on the various length rate, the phase arrangement, and the grounding resistance of the sheath in the cross-bonded section. It was clear that very large circulating current is generated in cable systems due to unbalanced length rate and phase arrangement in the cross-bonded section.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

Free Vibrations of Tapered Beams with Constant Surface Area (일정표면적 변단면 보의 자유진동)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Park, Chang-Eun;Lee, Tae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.66-73
    • /
    • 2011
  • This paper deals with free vibrations of the tapered beams with the constant surface area. The surface area of the objective beams are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear and parabolic ones. Ordinary differential equations governing free vibrations of such beams are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam parameters such as section ratio, surface area ratio, end constraint and taper type are reported in tables and figures. Especially, section ratios of the strongest beam are calculated, under which the maximum frequencies are achieved.

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume (일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

Non-Linear Analysis of Cantilever Beams with Constant Volume (일정체적 캔틸레버 보의 비선형 해석)

  • 이병구;이태은;이종국;안대순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.107-114
    • /
    • 2002
  • This paper deals with the non-linear analysis of cantilever beams with constant volume. Numerical methods are developed for solving the elastica of cantilever ben subjected to a tip Point load and a tip couple. The linear, parabolic and sinusoidal tapers with the regular polygon cross-section are considered, whose material volume and span length are always held constant. The Runge-Kutta and Regula-Falsi methods, respectively, are used to integrate the governing differential equations and to compute the unknown value of the tip deflection. The numerical results obtained herein are shown in tables and figures. Also the shapes of strongest beams are determined by reading the minimum values form the deflection versus section ratio curves.

  • PDF