• Title/Summary/Keyword: Secondary Metabolites

Search Result 544, Processing Time 0.025 seconds

Residue safety on ethephon in soybean leaf by drenching and foliar application (에테폰의 관주처리와 엽면살포에 의한 콩 잎 중 잔류 안전성)

  • Kong, Seung-Heon;Lee, Deuk-Yeong;Song, Young-Hoon;Park, Ki-Hun;Seo, Woo-Duck;Lee, Dong-Yeol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.75-78
    • /
    • 2018
  • Ethephon is useful pesticide as ethylene precursor, which is an efficient plant hormone to produce functional secondary metabolites. However, the residual safety of ethephon was not studied on various crops. In here, the dissipation pattern of ethephon residue in soybean leaf was investigated both on the foliar and drenching applications. The biological half-lives of ethephon residues were 26.6, and 21.1 h on the once, and double foliar applications, respectively. Although the residue after three days from the final application was up to $60.6mg\;kg^{-1}$, the residue was below the limit of quantitation on the dried soybean leaf. In addition, drenching application of ethephon could increase the residue up to $36.3mg\;kg^{-1}$ after 20.1 h from the application, however, the treatment would not affect to the total phenol content significantly (p >0.01).

Characterization of Multifunctional Bacillus sp. GH1-13 (복합기능성 Bacillus sp. GH1-13 균주의 특징)

  • Kim, Sang Yoon;Sang, Mee Kyung;Weon, Hang-Yeon;Jeon, Young-Ah;Ryoo, Jae Hwan;Song, Jaekyeong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2016
  • Several microorganisms in particular Bacillus subtilis group have been isolated from diverse places such as soils and the gastrointestinal tract of ruminants etc., and used as biocontrol agent against various plant pathogens and utilized as plant growth promoting agents. Among them, Bacillus is well known as one of the most useful bacteria for biocontrol and plant growth promotion. Bacterium GH1-13 was isolated from a reclaimed paddy field in Wando Island and identified as Bacillus velezensis using phylogenetic analysis on the basis of 16S rRNA and gyrB gene. It was confirmed that GH1-13 produced indole acetic acid (IAA) associated with promoted growth of rice root. GH1-13 showed characteristics of antagonization against the main pathogen of rice as well as diverse pathogenic fungi. GH1-13 had biosynthetic genes, bacillomycin, bacilycin, fengycin, iturin, and surfactin which are considered to be associated closely with inhibition of growth of pathogenic fungi and bacteria. This study showed that GH1-13 could be used as a multifunctional agent for biocontrol and growth promotion of crop.

Identification of a Protein Kinase using a FITC-labelled Synthetic Peptide in Streptomyces griseus IFO 13350 (형광 Peptide를 이용한 Streptomyces griseus IFO 13350의 인산화 단백질 동정)

  • 허진행;정용훈;김종희;신수경;현창구;홍순광
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Streptomycetes is a group of Gram-positive soil bacteria that growas a branching vegetative mycelium leading to the formation of spores, and display a physiological differenti-ation related to the synthesis of many secondary metabolites including antibiotics. Their complex life cycle and multicellular differentiation require various levels of regulation and types of signal transduction systems including eukaryotic-type serine/threonine protein kinases and prokaryotic-type histidine/aspartic acid protein kinases. Akt kinase that was found in cells is a sorine/threonine kinase controlling signal pathway for multi-tude of important cellular events. The activation or inactivation of Akt kinase in the cell is one of the critical regulatory points to deliver cell proliferation, differentiation, survival or apoptosis signal. To find the regula-tory protein homologous to Akt in Streptomyces, the fluorescien-labeled synthetic peptide (FITC-TRRSR-TESIT) was designed from the consensus sequence of target proteins for Akt kinase. From the difference of the mobility between the nonphosphorylated and phosphorylated synthetic peptides on Agarose gel electro-phoresis, the Akt-phosphorylating activity was monitored. The cell-free extract prepared from Streptomyces griseus IFO 13350 and the Akt homologous protein was purified by ammonium sulfate fractionation and many steps of column chromatographies such as, DEAE-Sepharose, Mono Q, Resource Phenyl-Soporose and Gel permeation column chromatographies. As a result, the protein phosphorylating the fluorescien-labeled Akt substrate was identified and it's molecular weight was estimated as 39 kDa on SDS-PAGE.

Gene Transfer Optimization via E. coli-driven Conjugation in Nocardiopsis Strain Isolated via Genome Screening (유전체 스크리닝으로 선별된 Nocardiopsis 균주의 대장균 접합을 통한 유전자 도입전략 최적화)

  • Jeon, Ho-Geun;Lee, Mi-Jin;Kim, Hyun-Bum;Han, Kyu-Boem;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • Actinomycetes, Gram positive soil bacteria, are valuable microorganisms which produce useful secondary metabolites including antibiotics, antiparasitic substances, anti-cancer drugs, and immunosuppressants. Although a major family of actinomycetes, known as streptomycetes, has been intensively investigated at the molecular level for several decades, a potentially valuable and only recently isolated non-streptomycetes rare actinomycetes (NSRA) family has been poorly characterized due to lack of proper genetic manipulation systems. Here we report that a PCR-based genome screening strategy was performed with approximately 180 independently isolated actinomycetes strains to isolate potentially valuable NSRA strains. Thanks to this simple PCR-based genome screening strategy we were able to identify only seven NSRA strains, followed by 16S rRNA sequencing for confirmation. Through further bioassays, one potentially valuable NSRA strain (tentatively named Nocardiopsis species MMBL010) was identified which possessed both antifungal and antibacterial activities, along with the presence of polyketide synthase and non-ribosomal peptide synthase genes. Moreover, Nocardiopsis species MMBL010, which was intrinsically recalcitrant to genetic manipulation, was successfully transformed via E. coli-driven conjugation. These results suggest that PCR-based genome screening, followed by the establishment of an E. coli-driven conjugation system, is an efficient strategy to maximize potentially valuable compounds and their biosynthetic genes from NSRA strains isolated from various environments.

Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil (Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제)

  • Han, Thazin;Cho, Min-Young;Lee, Yong-Seong;Park, Yun-Seok;Park, Ro-Dong;Nam, Yi;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.490-497
    • /
    • 2010
  • A chitinolytic bacterium having a strong antagonistic activity against various pathogens including Phytophtora capsici was isolated from rhizosphere soil, and identified as Lysobacter enzymogenes (named as LE429) based on 16S rRNA gene sequence analysis. This strain produced a number of substances such as chitinase, ${\beta}-1$, 3-glucanase, lipase, protease, gelatinase and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, sephadex LH-20 column chromatography and HPLC. The purified compound was identified as phenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. In field experiment, pepper plants were treated by the strain LE429 culture (CB), neem oil solution (NO), combination (CB+NO) or control (CON). Plant height and number of branches, flowers and pods of pepper plant in CB treatment were generally highest, and followed by CB+NO, CON and NO. The fungal pathogens were strongly inhibited, while several insect pests were discovered in CB treatment. Any insect pests were not found, while all fungal pathogens tested were not suppressed in NO treatment. However, in CB+NO treatment, non incidence of fungal pathogens and insect pests were found. The strain LE429 producing secondary metabolites with neem oil should be a potential agent to control fungal diseases and insect pests.

Increment of Physiologically Active Compounds in Germinated Brown Rice Treated with Chitosan and its Effect on Obesity of Rat Fed a High Fat Diet (키토산을 처리한 발아현미의 기능성분 증대 및 비만에 미치는 영향)

  • Li, Hua;Cho, Jeong-Yong;Gao, Tian-Cheng;Choi, Cha-Ran;Lee, Kang-Deok;Cho, Ji-Eun;Cho, Geon-Sik;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.8
    • /
    • pp.985-991
    • /
    • 2008
  • This study was to investigated the changes of physiologically active components in germinated brown rice treated with chitosan (CGBR) and its anti-obesity effect in rat fed a high fat diet. Contents of physiologically active compounds such as total phenolic compounds, total dietary fiber, $\gamma$-aminobutyric acid (GABA), and total phytic acid in CGBR were significantly higher than those of traditional germinated brown rice (GBR). Lipase inhibitory activity of CGBR was higher than those of GBR and brown rice (BR). High fat diets containing CGBR, GBR, and BR were administered to three groups of male Sprague-Dawley rats for four weeks. All groups showed no significant difference in body weight, total abdominal fat, and plasma lipid levels. However, CGBR group appeared to have lower body weight gain and total abdominal fat level than other groups fed high fat diets containing GBR and BR. Total cholesterol and LDL-cholesterol contents in plasma of CGBR group were also lower than those of other groups. Thus, new germination method of brown rice using chitosan is a useful process, which utilizes plant defense responses to elevate the production of secondary metabolites and anti-obesity effect.

New Degenerate Primer for the Cyanobacterial Non-ribosomal Peptides (시아노박테리아 Non-ribosomal Peptides의 효과적인 연구를 위한 New Degenerate Primer의 개발)

  • Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.362-365
    • /
    • 2007
  • Cyanobacteria have been identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Large multienzyme complexes which are responsible for the non-ribosomal biosynthesis of peptides are modular for the addition of a single amino acid. An activation of amino acid substrates results in an amino adenylate occuring via an adenylation domain (A-domain). A-domains are responsible for the recognition of amino acids as substrates within NP synthesis. The A-domain contains ten conserved motifs, A1 to A10. In this study, ten conserved motifs from A1 to A10 were checked regarding their amino acid sequence of the NRPS-module of Microcystis aeruginosa PCC 7806. The part of the amino acid sequence chosen was that which contained as many conserved motives as possible, and then these amino sequence were compared between other cyanobacteria to design a new degenerate primer. A new degenerate primer (A3/A7 primer) was designed to detect any putative NP synthetase region in unkwon cyanobacteria by a reverse translation of the conserved amino acid sequence and a search for cyanobacterial DNA bank.

Antioxidant Effect of Zostera marina Ethanol and Water Extracts (잘피(Zostera marina) 에탄올 및 물 추출물의 항산화 효과)

  • Park, Sun-Hee;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.346-350
    • /
    • 2017
  • Seaweeds have a number of secondary metabolites, such as polyphenols, polysaccharides, and carotenoids, and have received much attention as a source of natural antioxidants. Thus, this study was carried out to examine the antioxidant activities from ethanol (EE) and water (WE) extracts of Zostera marina. Their antioxidant effects were investigated using total polyphenol contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, and chelating effect. TPC of EE and WE was 2.12 mg/g and 3.88 mg/g, respectively. DPPH radical scavenging activities of EE and WE were increased in a dose-dependent manner. In particular, EE had DPPH radical scavenging activity of 93% at a concentration of 0.5 mg/ml, and was higher than that of WE (71%). EE and WE increased reducing power in a concentration-dependent manner, but their effects were lower than that of the control (ascorbic acid). In case of chelating effect, WE was 66% at a concentration of 1 mg/ml, and was stronger than EE (6%). These results suggest that extracts of Zostera marina can be potentially used as proper natural antioxidants in the food industry.

The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts (마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절)

  • Nam, Young sun;Ji, Juree
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.867-876
    • /
    • 2020
  • This study investigated the repair of UVB-induced cell damage by magnolol. We performed a drug-repurposing screen, and, in the STAT3 reporter gene assay, magnolol was identified as a suppressor of STAT3 that improves the cell viability of HDF cells. HDF cells treated with IL-6, UVB, and IFNγ showed the highest expression of Jak2 and phosphorylated STAT3 (p-STAT3), and magnolol was able to decrease the expression of Jak2 and p-STAT3 in UVB-induced cells. Moreover, UVB-damaged cell growth increased significantly in correlation with both reactivation and with magnolol in a dose-dependent manner. Compared with AG490 (a Jak2 inhibitor) treatment of UVB-treated HDF cells, cell proliferation increased significantly. We confirmed that AG490 and magnolol reduced TNF-α concentrations, and Western blotting (protein level) showed decreases in Jak2 and p-STAT3 expression in only the magnolol-treated cells. The expression of Jak2, p-STAT3, and SOCS3 also increased only after treatment with magnolol. Cells were treated with magnolol and ML385 (an NRF2 inhibitor), and these secondary metabolites reduced cell proliferation and NRF2 expression. The amount of MMP9 was also increased by cotreatment with magnolol and ML385. Collectively, these results demonstrate the potential of magnolol for repairing cells after UVB-induced damage by regulating the expression of NRF2, SOCS3, Jak2, and STAT3.

Biological Activities of Ethanol Extracts from Monascus-Fermented Chinese Yam (발효 홍국마 에탄올 추출물의 생리활성 효과)

  • Jeon, Chun-Pyo;Lee, Jung-Bok;Choi, Chung-Sig;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1142-1148
    • /
    • 2011
  • This study was conducted to investigate antioxidative and physiological activities of ethanol extracts concentration from Monascus-Fermented Chinese Yam (MFCY). The ethanol extracts from MFCY were measured to examine pigment, monacolin K content, total polyphenol content, DPPH radical scavenging activity and angiotensin converting enzyme inhibitory effects. In this study, the results show that Monascus sp. MK2, with Dioscorea batatas Dence. as the substrate, can produce pigments (red, orange, and yellow), monacolin K content, total polyphenol content and DPPH radical scavenging activity at 13.48 (red), 11.66 (orange), 12.77 (yellow), 462.78 (mg/kg), 658.8 (mg/kg) and 92.8% in EtOH extract, respectively. In addition, ACE inhibitory activity was shown to be 74.55% in EtOH extract. Therefore, it can be concluded that Dioscorea batatas Dence is the best fermentative substrate for Monascus species to produce secondary metabolites as biomedicinal substances.