• Title/Summary/Keyword: Second-harmonic generation

Search Result 187, Processing Time 0.019 seconds

Synthesis and Nonlinear Optical Properties of Poly(4-nitrophenylallylamine) Derivatives

  • 김영운;이광섭;진정일;최길영
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.607-612
    • /
    • 1996
  • A series of new NLO-active poly(4-nitrophenylallylamine) derivatives was synthesized by the nucleophilic substitution reaction of several substituted 4-nitrohalobenzenes and poly(allylamine hydrochloride). All polymers obtained were amorphous and their glass transition temperatures (Tg) were observed around 148-160 ℃. For each of these polymers, their specific Tg values were dependent on characteristic electronic structures. UV-visible absorption spectra showed maximum absorption intensity at 355-393 nm for π-π* transition of alkylaminonitrophenyl groups. The χ(2)value of poly(4-nitrophenylallylamine), as determined by the second harmonic generation at 1064 nm, for a thin polymer film poled at an elevated temperature, was 1.4x10-8esu. The third-order NLO properties of poly(4-nitrophenylallylamine) derivatives were evaluated through measurement of degenerate four-wave mixing technique and χ(3) coefficient in the range of 2.7~3.2x10-12 esu at 602 nm was found with 400 fs laser pulses.

Surface orientational distributions of chiral chitosan-polymer (카이랄 키토산 고분자의 표면 방향 분포 연구)

  • N. Y. Ha;S. H. Han;H. J. Chang;J. S. Hwang;D. W. Jeon;Jung, Chi-Sup;Park, Byoungchoo;J W. Wu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.168-169
    • /
    • 2003
  • We have determined the orientational distribution functions (OBFs) at both air and substrate isotropic interfaces of a chiral chitosan bio-polymer film by the measurements of surface second-harmonic generation (SHG). It was shown that the simultaneous SHG analysis of both interfaces, based on the macroscopic and microscopic relations, provides all the informations on the nonlinear optical (NLO) activity. (omitted)

  • PDF

Analysis of Beam Quality of the Unsymmetric Nd : YAG Laser with Unstable Resonator (비대칭 구조로 이루어진 불안정 공진기형 Nd : YAG 레이저의 빔질 분석)

  • Kim, Hyun-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.456-461
    • /
    • 2005
  • We numerically investigate the characteristic of single Nd:YAG rod laser with the convex-plane resonator configuration in order to get the best condition for high efficient intra-cavity second harmonic generation(SHG). The beam quality is analyzed with ABCD matrixes including the thermal lensing characteristic of Nd:YAG rod. The analysis is focused on stability, M2, beam waist and mode-volume of laser beam inside the resonator. The best conditions for SHG is obtained when a laser rod is set near the curved laser mirror.

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

Effect of quartic nonlinearity on elastic waves via successive approximation

  • Hamza Hameed;F. D. Zaman
    • Advances in materials Research
    • /
    • v.13 no.4
    • /
    • pp.285-297
    • /
    • 2024
  • The theory of nonlinear elastic wave propagation is important in multiple scientific and engineering fields. In this study, we present a comprehensive examination of nonlinear elastic wave profiles through a contemporary approach of successive approximation. This research is related to nonlinear elastic wave models along different types of nonlinearities. Murnaghan potential is used due to the assumption of the hyper-elastic materials. We explore the complication of the governing equations and go through the behaviors of nonlinear waves in one dimension. The comparative aspect of our study is a distinctive feature, as we evaluate and contrast the results obtained using successive approximation along different nonlinearities. Additionally, we present graphical representations of our findings, enhancing the visual comprehension of the wave profiles and their evolution. This study contributes to the nonlinear elastic wave analysis and comparison.

Measurement of picosecond laser pulsewidth and pulseshape by two-photon fluorescence and noncolloinear type I second harmonic generation method (이광자 형광법과 비공선 일종 이차고조파법에 의한 피코초 레이저 펄스폭과 펄스형 측정)

  • 한기호;박종락;이재용;김현수;엄기영;변재오;공흥진
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.251-259
    • /
    • 1996
  • Two-Photon Fluorescence (TPF) experiment measures temporal width of an amplified short laser pulse which has passed through a four-pass Nd: glass amplifier, after selecting a single pulse from pulse train Q-switched and mode-locked(QSML) in Nd:YLF master oscillator. Determination of pulsewidth and pulseshape was also made with detection of autocorrelation trace of CW mode-locked pulse train by using noncollinear type I Second Harmonic Generation (SHG) method. The observed TPF track showed various patterns, depending on pulse-selecting position in QSML pulse train. That is, autocorrelation of a pulse extracted at front of the train displayed smooth pulse shape, while one from the trailing part of the train created many sharp spikes and substructure in the pulse. By TPF method, pulsewidth was measured to be 44.4 ps with contrast ratio of 2.86 which enabled us to find out energy fraction of a pulse to total energy, (sum of pulse and background); we obtain the value of 0.62. Pulsewidth of 46.6ps was also acquired in another SHG experiment with the help of only mode-locked pulse train. On the other hand, we confirmed that shape of the pulse is close to $sech^2$ one as a result of fitting the SHG autocorrelation signal with various functions. With simulation using this $sech^2$ type of pulse, pulsewidth reduction of the beam, having passed through four-pass amplifier, was also verified.

  • PDF

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

Nonlinear Theory for Laboratory Wave Generation (비선형(非線形) 조파이론(造波理論))

  • Kim, Tae In
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.137-150
    • /
    • 1992
  • A complete solution, exact to second-order, for wave motion forced by a hinged-wavemaker of variable-draft is presented. A solution for a piston type wavemaker is also obtained as a special case of a hinged-wavemaker. The laboratory waves generated by a plane wave board are shown to be composed of two components; viz., a Stokes second-order wave and a second-harnomic free wave which travels at a different speed. The amplitude of the second-harmonic free wave is relatively large in shallow water and decreases to less than 10% of the amplitude of the primary wave in deep water. Wavemakers with relatively deeper draft (i.e., hinged near the bottom) generate the free waves of smaller amplitude in shallow and intermediate water depths than the wavemakers with shallow draft. However, the opposite is predicted by theory in deep water.

  • PDF