Browse > Article

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm  

Moon, Jei-Kwon (Korea Atomic Energy Research Institute)
Baigalmaa, Byambatseren (Korea Atomic Energy Research Institute)
Won, Hui-Jun (Korea Atomic Energy Research Institute)
Lee, Kune-Woo (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.8, no.3, 2010 , pp. 181-188 More about this Journal
Abstract
Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.
Keywords
Ablation decontamination; Q-switched Nd:YAG laser; Second harmonic generation; High radioactive facilities; Radioactive metal waste;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. A. Blessa, E. B. Borghi, S. P. Ali and P. J. Morando," Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids", J. of Nuclear Materials, 229, 115 (1996).   DOI   ScienceOn
2 M. S. Lafique, R. M. Khaleequr, T. Fridos, K. Aslam, A.M. Shabaz and H., Latif, "XRD and SEM analysis of a laser irradiated cadmium:, laser Physics, 17 (9), 1138 (2007).   DOI   ScienceOn
3 B. Baigalmaa, H. J. Won, J. K. Moon, C. H. Jung and J. H. Hyun, "A comprehensive study on the laser decontamination of surfaces contaminated with $Cs^{+}$ ion", Applied Radiation and Isotopes, 67, 1526 (2009).   DOI   ScienceOn
4 Y. Fukui, R. Ogawa, N. Ishijima and N. Kenichi "Development of laser decontamination", JNC TN9410 99-014 (1999).
5 Ph. Delaporate, M. Gastaud, W. Marine, M. Semtis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy and D. Blin, "Dry eximer laser cleaning applied to nuclear decontamination", Applied Surface Science 298, 208 (2003).
6 Dieter, "Laser Processing and Chemistry", P 190, Springer, 3rd Revised and Enlarged Edition, 2000.
7 T. Dimogerontakis, R. Oltra and O. Heintz, Appl. Phys. 81, 1173 (2005).   DOI   ScienceOn
8 L. M. Cabalin, D. Romero, J. M. Baena, J. J. Laserna, "Saturation effects in the laser ablation of stainless steel in air at atmospheric pressure". Fresenius J. Anal. Chem. 365, 404 (1999).   DOI   ScienceOn
9 A. L. Thomann, A. B. Wegscheider, C. Boulmer-Leborgne, A. Pereira, P. Delaporate, M. Sentis and T. Sauvage, "Chemical and structural modifications of laser treated iron surfaces: investigation of laser processing parameters", Applied Surface Science 230, 350 (2004).   DOI   ScienceOn
10 A. C. Tam, W. P. Leung, W. Zapka and W. Ziemlich, "Laser cleaning techniques for the removal of surface particulates", J. Appl. Phys. 71, 3515 (1992).   DOI
11 L., Li "The potential role of high power lasers in nuclear decommissioning", Nucl. Energy 41, 397(2002).   DOI   ScienceOn
12 M. S. Reafique, M. T. Firdos, K. Aslam, M. S. Anwar, M. Imran, and H. Latif, Laser Physics. 17, 1138 (2007).   DOI   ScienceOn
13 양영미, 최왕규, 오원진, 유승곤, "우라늄 화합물로 오염된 금속폐기물의 전해제염" 방사성폐기물학회지, 1(1), 11 (2003).   과학기술학회마을
14 J. Meijer, "Laser beam machining (LBM), state of the art and new oppertunities", J. of materials process. Technol., 149, 2 (2004).   DOI   ScienceOn