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Abstract

A complete solution, exact to second-order, for wave motion forced by a hinged-wavemaker of variable-
draft is presented. A solution for a piston type wavemaker is also obtained as a special case of a hinged-
wavemaker. The laboratory waves generated by a plane wave board are shown to be composed of two
components; viz., a Stokes second-order wave and a second-harnomic free wave which travels at a different
speed. The amplitude of the second-harmonic free wave is relatively large in shallow water and decreases
to less than 10% of the amplitude of the primary wave in deep water. Wavemakers with relatively deeper
draft (i.e., hinged near the bottom) generate the free waves of smaller amplitude in shallow and interme-
diate water depths than the wavemakers with shallow draft. However, the opposite is predicted by theory

in deep water.

..........................................................

1. INTRODUCTION

Following the classical wavemaker theory of
Havelock™, Biesel and Suquet® solved the line-
arized wave motions for both a piston-type wave-
maker and a flap-type wavemaker hinged on the
channel bottom. Later Hyun® extended the work
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of Biesel and Suquet® to the case of hinged-wa-
vemakers with a flap of variable-draft. The solu-
tion presented by Hyun® was extended by Huds-
peth and Chen" to a wave flume which consisted
of two constant depths connected by a gradually
sloping transition region. When relatively long wa-
ves of finite amplitudes are generated by a sinu-
soidally moving wavemaker, it has been observed
[Goda and Kikuya®; Multer and Galvin®; Iwagaki
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and Sakai] that the resultant wave, rdther than
being of permanent form, breaks down into a pri-
mary wave and one or more secondary waves.
This secondary wave phenomenon is not predicted
in linear wavemaker theories and has stimulated
the need for developing nonlinear theories.

Fontanet® first developed a complete second-
order theory in Lagrangian coordinates for the
waves generated by a sinusoidally moving plane
wavemaker. However, his solution is relatively
complicated to use and results are presented only
for piston-type wavemakers. Madsen® obtained a
more useful approximate solution using a Stokes
expansion for a piston-type wavemaker. However,
his second-order solution completely neglects the
effects of the first-order evanescent eigenmodes,
so that the results are valid only for long waves.
Multer®™ solved the piston-type wavemaker pro-
blem numerically. Daugaard'’ and Massel'? in-
cluded the effects of the first-order evanescent
eigenmodes in a Stokes expansion formalism to
obtain a second-order solution for a piston-type
wavemaker. However, their second-order solution
still neglects the effects of the first-order evanes-
cent eigenmodes on the free-surface boundary
conditions near the wavemaker. Flick and Guza™®
investigated the motion of a flap-type wavemaker
by computing the coefficients for the propagating
eigenmode numerically. Closed-form expressions
for the coefficients in their second-order solution
were not presented.

More recently, Kim and Hudspeth® presented
a complete second-order analytical solution which
satisfies exactly the second-order boundary condi-
tions. They used the solution to compute the li-
near and second-order hydrodynamic pressure fo-
rce and moment on hinged wavemakers of
variable-draft.

In this paper, the first- and second-order analy-
tical solutions for the fluid motion forced by a
sinusoidally moving planar wavemaker follow Kim
and Hudspeth!™ Surface wave profiles and the
amplityde .of the second-harmonic free wave are
examined in detail. The analytical results are com-
pared with the limited experimental data.

2. NONLINEAR WAVEMAKER THEORY

2.1 Basic Equations (Kim and Hudspeth,
1990)
For convenience, all physical variables(denoted
by *) will be made dimensionless by the following;

(x,y.hdeL)y=k*"x*y* h*d*e* L")

tD=+/g*k* (t*T*), HnSE=H*"n*S«/a*
wvy= @t vi@* g'k*), & =0*(a* /g*/k")
B =B*(a*g"), p =p*/(p*a*g")

in which a*= amplitude of the first-harmonic wave
component and k*(=2n/L*)=the wave number,
and g*=gravitational acceleration.

Consider two-dimensional, irrotational motion of
an inviscid, incompressible fluid in a semi-infinite
channel{(0<x<w) of constant water depth, h. The
Cartesian coordinate system and the wavemaker
configuration are shown in Figure 1. The fluid
motion may be obtained from a velocity potential
O(x,y,t) according to

uxy )= -, vixyt)=—-0, {1a,1b)

in which the subscripts denote partial differentia-
tion.

The velocity potential, ®(x,y,t), is governed by
the Laplace equation

D+ Dy, =0; 0<x<w, —hSy<Len(xt) (2a)
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with the boundary conditions

®,.=0 ; 0<x<w, y=—h (2b)
a 1, _ )
Butd, (e 2~ eV V) [ V|

+B=0 ; 0<x<w, y=gn(x,t) (2c)

O, — Dyt =0 ; x=gxly, 1) 2d)

Radiation condition ; x — (2e)

in which B(t)=Bernoulli constant, the gradient
operator “7( - ):(ié—x ~+j5~ ¥+ ) and the small
parameter ¢~ak «1. The wavemaker boundary
condition, Eq.(2d), states that the water particles
on the wave board must remain on the moving
boundary at all times. The instantaneous wave
board displacement from its mean position, x(y.t),
is given by

x(v,t) = &ly)sinat 3

in which ®=2n/T being the angular frequency
of wavemaker oscillation.

The prescribed amplitude of wavemaker displa-
cement, &(y), is

~(S/2){(y+h—d)/e} - Uy +h—d)
for a hinged flap (4a)
—~S8/2 for a piston (4b}

é(y) =

in which S/2=wavemaker stroke measured at ar-
bitrary height, e, above hinge, and U( - )= Heavi-
side step function. In Eq.(2e), the radiation condi-
tion requires that only waves traveling in the posi-
tive x direction exist far from the wavemaker.

The free-surface profile, n(x,t), is given by the
free-surface dynamic condition as

nxH==o,— %—s L@ | P+ B; 0<x<o0, y=enixt)
- 5)

The pressure, p, is determined from the Ber-
noulli equation given by

1 ,
pxyt) =~ 28 | VP | i—y/e+B;
0Sx<®, —h<y<Zen (6)

The free-surface conditions, Egs.(2c) and (5),
and the wavemaker boundary condition, Eq.(2d),
may be expressed by their values at mean posi-
tions by use of Taylor's theorem: i.e,
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In addition, the unknowns ®, v, B, and p may
be expanded in the small parameter, ¢, in the fol-

lowing:
Dly0= ey By (10a)
&= et mx) (10b)
B®)= T e 1B(t) (10¢)
plx,y,t)=pyy) + Zne DXyt (10d)

in which p,= —y/e represents the dimension-
less hydrostatic pressure.

In laboratory waves, the wave frequency is fixed
and therefore the wave number will change as
the wave amplitude increases. Since the spatial
variables, x* and y* are made dimensionless by
the wave number, k* the wave frequency, w*,
must be perturbed in order to obtain the correc-
tion terms, and then the equality of wave freque-
ncy may be introduced in order to obtain the cha-
nge in the wave number [cf. Goda and Abe (15),
p. 18]. A dimensionless time variable is defined
by

t=ot=(Ze" wt an

Upon substitution of Egs.(7)-(11) into Eqs.(2)-(6)
and collection of the terms of the same order in
g, a set of linear boundary value problems is ob-
tained which may be solved in successive order.

2.2 Linear Solution
The linear boundary value problem obtained for
order £ from the perturbation expansion is as
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follows:

1q)x>f+ l(DH:O N OSX<°0, - hSySO (123)

1D, = ; 0€x<0, y=-— (12b)
wo? 1O+ 1Py +w, 1B, =0: 0£x<0, y=0 (120c)
11:[)":: — WX ;o ox=(, - hSySO (12d)
Radiation condition x -> o (12¢)

in which ¥{y, ©)=&y) sin t
The first-order free-surface elevation, m, and
the dynamic pressure are obtained according to

m=wm, 19 ; 0€<x<w, y=0 (13)
and
p=w, D, ; 0<x<o0, —h<y<L0 (14)

A simple-harmonic solution to the linear prob-
lem requires that ;B be identically zero in Eq.{12
¢). The linear solution is well-known and is given
by the following eigenfunction expansion [cf. We-
hausen(16) and Hudspeth and Chen'].

1Dy, D) = a,0,(y)sin(x— 1)
+cost E 0, 0m(y) exp(— aw X) (15)
in which the orthonormal eigenfunctions, ¢:(y) and

Only), in the interval of orthogonality, —h<y<0,
are given by

(V)= cosh{y +h)/n,
5 Om(Y)=cosan(y +h)/n, for m>2 (16)

and the normalizing constants are

n= J ’ hcosh’“’(y +h)dy=[2h+sinh(Zh}]/4 (17a)
and

Ty’ = j ' hcos;za,,(y +h)dy=

[20,,h+ sin(Zanh)} (4o, for m>2 (17h)

The wave number, k, and the dimensionless ei-
genvalues, m, in Eq.(15) are determined from Eqg.
(12¢c) and are given by the real root(roots) of the
transcendental equation

w,.=tanh h (18a)
and
Wl = —an tan ayh for m>2 (18b)
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respectively.

Far away from the wavemaker (x>3h, say), the
evanescent eigenmodes in Eq.(15) are sensibly
less than 1% of their values at the wavemaker
(x=0}, and the dimensionless linear free-surface
profile, m(x,t), is given by

M= cos(x— 1) 19

so that the dimensionless wavemaker gain func-
tion, S(=S*%a"), is determined from Eq.13) to
be

S=2 en?/D) (20)

in which D(h)=sinh h + [(h—d) sinh h—cosh h
+cosh {d - Uld)}].

For a piston-type wavemaker, (—d and e)-»w,
and Eq.(20) reduces to

S=2n/sinh*h 21)
in agreement with Eq.(13) given by Madsen(9).

The coefficients a;, and a,, in Eq.(15) are deter-
mined from the wavemaker boundary condition,
Eq.(12d), and are given by

a;= —wem/sinh h
for both a hinged flap and a piston (22a)

and

an=| for a hinged flap
-, Ny? sin on/[ an’n, sinh?h]
for a piston

~w, 1 Duam)/Lan’nD(h)] ]

(22b)

in which Dy{ot) = am(h—d) sin a,h+ cos anh—cos
{od - Utd)}.

2.3 Second-Order Solution
The boundary value problem at second-order
is the following fororder ¢:

2¢xx+' zd)yy: 0 ; O‘$X<CO, - hﬁySO (233)

oP, =0 ; 0€x<, y=—h (23b)
, ¢
W'Dy, 2Dy + 0o 2B = — 2000007 1P+ 000 .
2 2 d 2
(I(D X + ]‘Dy )-’ m 'a—;(w:) I(Dn+ 1¢y)
RE@-LARRR T



; 0<x<e0, y=0 23¢c)

Zq)x: - Q)IX:+ l¢yXy_‘ 1¢xx X X= 0, - hSySO
(23d)

Radiation conditionx — «© (23e)

The dimensionless free-surface elevation, .n,
and the dimensionless dynamic pressure, ;p, are
given by

M= 0P+ 1P, — %(1@){2 +19,9)+ @, md,T+.B
; 0€x<0, y=0 24)
and
p= 0P+ o) 1P — ‘%(1‘1&2 +®,)+,B
; 0<x<mw, —h<y<0 (25)

Previously published solutions [Madsen®; Dau-
gaard®?; Flick and Guza'™; and Massel'?] have
failed to include the time-independent trms in
Eqgs.(23c) and (23d) as well as the near-field eva-
nescent terms in Eq.(23c).

Taking the time average of both sides of Eq.(24)
over one wave cycle and requiring that {m>=0
{(+> represents a temporal average equal to T

.
J’O ( - )dt} in the region x > 3h, the Bernoulli con-
stant at second-order is determined to be

B 2k (26)

Accordingly, :B.=0 in Eq.(23c). In addition, the
first term in the right hand side of Eq.(23c) must
vanish since the term w,mwuP- would introduce
a non-periodic term of the form, ty®, in the solu-
tion for ;®. Since w,X0, it is required that

w, =0 27

showing that the wave number, k, is a constant
correct to second-order.

For Egs.(23), the second-order solution may be
decomposed into four linear velocity potentials ;
namely, a Stokes wave potential, ,®°* ; a near-field
evanescent interaction potential, ,®° ; a wavema-
ker-free wave potential, »@ ; and a time-indepen-
dent potential, ¥; ie.,
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g(b = 2@5 + zd)e + 2¢I+ ¥ (28)

Substitution of Eqs.(15) and (28) into Eqs.(23¢ and
d) gives

L{z@" +,@¢ + @'+ ¥) = f1(¢1)sin2(x — t) + f3(0y,
Om)exp(— anX)sin(x — 2t) + f3(01,  dwlexp{— amx)cos
= O+ HOm Ondexpl — (@ + a)x}isin2e+ (0, o)
exp(—amx)cos x ; 0Sx<o0, y=0 (29a)

and

a .
. @+ 2@+ D'+ ¥} = W,(0,,E)cos2t + W,

(O, Esin2t+ Wiy, & ; x=0, —h<y<0 (29b)
2
in which the linear operator L( - ):{w‘,z'—aa—rg‘”{”

6%7 } - ), and the terms f;, f,, f3, f1, f5, W1, W, and

w3 represent the first-order non-linear interac-
tions. It should be pointed out that the first-order
evanescent eigenmodes form part of forcing func-
tions at the second-order in Egs.(29). This point
has been neglected in earlier nonlinear wavema-
ker theories.

Now if the Stokes wave potential, ,®°, satisfies
exactly Eqs.(23a, b, and ¢) as well as the free-sur-
face condition, L(GD%)-fi(¢)) sin2(x—1t)=0, the
near-field evanescent wave potential, ,®°, may be
chosen to satisfy Eqs.(23a, b, and e) in addition
to the free-surface condition, L(®%) — (¢, do)exp
(— apx)sin(x —t)-f3(¢1, Pmexp(— omX)cos(x — 2t)— 1,
(Om, Pa). exp(—~ apx)sin(x-2t)=0. The time-indepe-
ndent potential, ¥, must satisfy Eqs.(23a, b, and
e) as well as the two inhomogeneous boundary
conditions ; LOY)—{s(d, On) exp{—anx)cos x=0
on y=0, and &(W—W;;(d)l, =0 at x=0. Then
the free wave potential, .®', must satisfy Egs.(23a,
b, and e) as well as

L {®}=0 ; 0Lx<w0, y=0 (30a)
and
2®x! =
= (@@, X+ 2@, + Wi(91,)cos2t + WaOmE)sin2t
. x=0, —h<y<0 (30b)

which gives a well-posed Sturm-Liouville problem
for the second-order free wave potential, ,®f, in
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the vertical y coordinate.
The Stokes wave potential, %, is simply the
Stokes second-order solution given by Stokegt”

3akw, cosh2(y+h)
8 sinh®h

g Pt = — sin2(x—1) (31

The solution for the near-field evanescentl
wave potential, sP°, and the free secondary wave
potential, ,®', are assumed to be given by

e P{x,y,t)=

{ 2l 017)0m{¥Icos(x — 2v) — ' (¥)dw ' (¥)sin
(3~ 20]+ Fm[¢1(y)¢m(y)sm(x 20+ 0 (y)0s'(¥)
cos(x— 2v)])texpl —ax]+ 22 2: Gaal Om(¥)On(y)

— &' (D0, () Jexpl — (an + o.n)x] sm2“t (32)

and
e D' (x,y.t) = [Bicos(Bix — 2t) + Cisin(Bix — 20) JQu(y)
+3
_,[Basin2v+Ccos2t] Qulydexp
[—Bn x] (33)

in which the orthonormal eigenfunctions, Qu{y}
and Q(y), in the interval of orthogonality, —h<
y<0, are

Qu(y)= coshPi(y+h)/Ni; Quly)y=cosPu(y+h)/N,
(34)

and the normalizing constants are

Ni= j cosh?By(y+ hydy=[h+ sinh(2B:h)1[48:]
(35a)

NZ= f 7" c082B.(y + h)dy = [2B,h + sin(2B,h) 1 4B, ]
(35h)

The eigenvalues, B; and B, are the real roots
of
4wf = Bytanhph (36a)
and
= —BtanBh for n22 (36b)

respectively. In Eq.(32), ¢,/ (y)=sinh(y+h)/n; and
O ()= sintn(y + b)Y/ np.
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The coefficients E,, F., and G,, in Eq.(32) are
determined from the free-surface boundary condi-
tion for #0°, The final closed-form expressions for
these coefficients are given by

nl3 Dm(am)[Bm(am) Am(am):!

En=2ako D(hy sinh h @y’ nn L4+ ArXom)]
(37a)
F. = — akoy N Do(@nl4+ An(an) - Bo(an)]
" D(h) sinh h am? n, [4+And(am)]
37h)
4
Gm“ ak(l)q)?l,?%(ﬁ‘)‘" ’

Dn(0m)Doan ) 2+ 2w0* /0ty + 0/ (0 COS% 00 1) ]
A0 102 — 4030/ ™ Cun/ On — U/ i)
(37¢)

in which An(ote)= 40"t ' — ot
and B.(o.)=
anh).

Likewise the coefficients B;, By, Ci, and C, in
Eq.(33) are determined from the kinematic wave-
maker boundary condition for ,@" given by Eq.(29
b). The final closed-form expressions for these
coefficients are given in Appendix L. It should be
noted that the first-order evanescent eigenmodes
significantly affect the values of By and C, in Egs.
(51a, ¢). Since By and C, represent the amplitude
of the propagating second-harmonic free wave in
Eq.(33), first-order evanescent eigenmodes play
the important role in generating second-harmonic
free wave, though they vanish far away from the
wavemaker. The coefficients for a poston-type wa-
vemaker may be obtained by taking the limit in
Egs.(50a)~(50p) for the valus of d=—cw

A feature of the second-order problem is the
time-independent potential, ¥(x,y), in Eq.(28). The
time-independent potential, ¥, must satisfy the fo-
llowing boundary value problem:

+ A and Bm(a‘m

"é-(am U sech*h—4mton o sec?

¥+ ¥y=0 ;i 0€x<w, —hLy<0 (38a)

¥,= — 120,00 £, an0n0)sech®h + a,isec

ampexp{ — anX)cosx
; 0Lx<o0, y= (38b)

¥,=0 . 0<x<o0, y=—h (380)
S
[ ------ - Lor )+ -+ h— douty)]- Uty + b
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Y.={ — d) for a hinged flap
» x=0, —h<y<0 (38d)
S
~-4~al¢1(y) for a piston
¥, — bounded ; x > + o (38¢)

Again, ¥ may be decomposed into two indepen-
dent potentials; namely,

Y=gy (39)

The free-surface potential, ¥®, is chosen to sati-
sfy Eqs.(38a, b, ¢, and e) regardless of the con-
dition of the wavemaker. Then the wavemaker
potential, ¥*™, must satisfy Eqs.(38a, ¢, and e) as
well as the homogeneous free-surface boundary
condition

¥ () : 0Lx<w, y=0  (40a)

and the inhomogeneous wavemaker boundary con-
dition

Y= =¥+ wa(0n, §) 5 x=0, —h<y<0 (40b)

in which ws(¢,, & is given by the right hand side
of Eq.(38d).

The solutions for ¥® and ¥*™ may be given
by

¥ (xy)= Z [bu[0:(y)cos x—&'()on'W)sin x]

+ (:m[cbl(y)d)m(y)sin X + ¢1’(y)¢m’(y)cos
x]lexp(— amx) 4D

and
¥ ™(xy) = Aox+ i‘.‘ Arpu(exp(— . x)  (42)

in which the orthonormal eigenfunctions, @.(y), in
the interval of orthogonality, —h<y<0, are ¢,=
\/h—/é_ - cosy,(y+h) provided that the eigenvalues
are p,=nn//h.

Substituting Eq.(41) into Eq.(38b) and equating
the coefficients of cos x and sin x on both sides,
bm and ¢, are determined to be

Din(am)Hm(0r)

m= k 0 T e P 43
bn=akeo e Do Qo on0)
and
1 Dm(am)Hm(am)(am "l am)
-1 3b
e g K e 000 O (0) D)

WI12% P41 19925 127

in which Hn(am)=(a"' cos’ axh+cosh*h)(an+
an 7R

The coefficients Ao and An are determined
from Eq.(40b) and are given by

A= lakm |_nlz(h —d)  Dn(amHn(0m)(@n-an ") ]
© 277 D(h) D 2 (O)ume’dn(0)
(44a)
and
A=
_ (—1"n*01(0)[ 2+ wo*(h — d)(1 + pa 51+ Is(d)
aka, |

VZh 620) - DA+ )72
(-1
v2h ¢.20)D(h)y,

. Dp@mHn@m)(1+an Dl tan 2—wlon? |
z, 3 ~2 2. -2 PO
m=2 Ny ¢m(0)[(1+am +un O ) ~—4un O
(44b)

in which

—n® v/2/h oud—ho(d— )2+ p(1
Is(d):[ —pn Dtanh d - tanp,d] for d>0
for d < 0.

—2n/? (44¢)

This time-independent solution, which has been
neglected in former studies, is required to satisfy
exactly the inhomogeneous boundary conditions
both at the free-surface and at the wavemaker.
It is proved that this time-independent solution
accurately estimate the mean return flow in a clo-
sed wave flume computed by the Eulerian me-
thod. This is a feature of the present theory, and
the significance of the time-independent solution
related to water mass circulation in a closed wave
flume has been discussed in detail by Kim et.
al.“B"

3. SURFACE WAVE PROFILES
The dimensionless free-surface elevation, n(x,t),
up to second-order is given by

nxt)=mx t)t+em(xv) (45)

Substituting Eqs.(15), (26), and (28) for @, B, and
2P into Eq.(45) and considering the propagating
modes only, the dimensionless free-surface
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elevation at x 2 3h, is given by

ak cosw
4sinh® h

cos?(x—1v)+2Qu(0) {Bysin(Bx—2t)

— Cycos(Bix—21)} (46)

n(x, ©y=cos(x—t)+ (cosh2h+2)

or

nx, ©)=cos(x—1t)+a® cos2(x—1)

+a; cos(Bix—2t+8)) (47a)

in which 8 =ARCTAN {(—B)/(Cy} and
a’*=ak cosh h(cosh Zh+ 2)/{4sinh®h) (47b)
a'=2Qu0) B’ +CH"” ic)

Thus a free wave of dimensionless amplitude,
as, and dimensionless celerity, C'=2/f., travels
together with the usual Stokes second-order wave
in laboratory flumes. Since B;>2, the free wave
travels at slower speed than the Stokes wave.

The two second-harmonic wave components in
Eqs.(47) may be combined to yield

1(x,T)= cos(x— 1)+ ay(x) cos2{x—1t+86,,(x)](48a)
in which

ab(x)= (as} + (ab)’ + 2(asiahcos[(B: — 2)x + 8, ]
(48b)

As shown in Eq.(48b), the amplitude of the se-
cond-harmonic wave demonstrates a “beat” effect
as was first identified experimentaily by Hansen
and Svendsen® as a result of the interactions
of the Stokes and the free wave with a dimensio-
nless beat length, Ly, given by Ly=2n/(B;—2). The
ratios of the free wave celerity to the Stokes wave
celerity, C'/C%, and the beat length to the first-har-
monic wave length, Ly/L, are shown in Figure 2
as functions of the relative water depth, h/L..

In shallow water(h/L,<0.015), the ratio of C'/C®
approaches to unity showing that the free wave
travels about the same speed as the Stokes wave.
Meanwhile, the ratio of L./l shows larger than
unity in shallow water, showing that the beat le-
ngth is longer than the Stokes wave length. In
deep water, however, the ratios of C//C* and Ly/L
approach to 0.5 and 0.05 respectively, showing that

- 1 44 —_

hiLg

Fig. 2. Dimensionless free wave celerity, C'/Cs,
and beat(meander) length, L./L, as func-
tions of the relative water depth

the free wave travels at a half the Stokes wave
celerity and that the beat length is only 1/20 of
the first-harmonic wave length.

From Eq.(47a), the elevation of the resultant
wave crest and trough is given by

Neress = 1+ a5+ a; cos[(By—2)x+8,] at x—v=2
nm; n=0, §, 2, - (49a)

Through = — 1+ a2+ a2’ cos[(By~2)x+8;] at x—1
=@n+ Dnr; n=0, 1, 2, - (49h)

so that the dimensionless wave height, H, is given
by

H= Nerest ™ Ttroygh — 2. (50)

Therefore, up to second-order, the wave heights
measured at fixed locations are independent of
the longitudinal distance over the wave flume, and
are given by the height of the first-harmonic wave.
However, the spatial envelope of the wave train
demonstrates a snake-like pattern with the “mea-
nder length,” L.

The waveform in the horizontal distance, x, of
the second-order wave componets as well as the
resultant wave predicted by Egs.(48) is shown in
Figure 3 for a wave of H*==0.692m, T*=3.76 sec
[Case 7-B in Dean®], which is forced by a hi-
nged flap on a channel bottom in a wave flume
of constant depth, h*=4.42m. The total second-
harmonic wave demonstrates a beat effect as
shown in Figure(3f). Accordingly, the resultant
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H* = 0.692 a, T* = 3,76 sec. h* =442 »

( H*/ls® = 0.0625. h'/1e* =020 )
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Fig. 3. Propagation of both the second-order wave
components and the resultant wave profile
along the wave flume

wave becomes irregular in the longitudinal dista-
nce, %, as shown in Figure(3e). The solid lines
represent the wave profile at t=0, and the dotted
line in Figure(3g) represents the same wave train
at t=rn/4. As the wave propagates within this spa-
tial envelope, its form continually changes over
the “meander length”, L.*.

Figure 4 shows a sample record of the spatial
envelope of wave trains measrued in the Oregon
State University Wave Research Laboratory in
which wavemaker is a flap hinged at 7.6cm above
the channel bottom. The water depth over the
main floor was 3.35m. The spatial envelope of
wave crest and trough was recorded by moving
a wave guage slowly over the main floor of the
channel. The meander form in the spatial enve-
lope of the wave crest and trough elevation is
evident in Figure 4, with the meander length,
Ly*=14.2m which show good agreement with the
predicted value 13.2m. The amplitude of the free
wave measured from the chart is a,*=3.4cm
which is in good agreement with theoritical value

MI24% HW41HE-19929 124
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Fig. 4. Sample record of spatial envelope of wave
crest and trough elevation in a constant
water depth h=3.35m

3.1cm.

Figure 5 shows a comparison between the pre-
dicted and the measured surface wave profile at
three different locations along the channel for the
wave train with a wave height, H*=1.07m and
a wave period, T*=4.55 seconds. The existence
of the secondary free wave may be readily recog-
nized by the variation of waveforms at different
locations. In Figure 5, agreement between the
wave guage records and the predicted values by
Eq.(47a) is fairly good. The discrepancies between
the measured and the predicted values along the
down-crossing parts of the wave profile in Figure
5 may be due to the higher-harmonic wave com-
ponents which are not included in the present
second-order theory.

The dimensionless amplitude of the free wave,
a;/a, is plotted in Figure 6 as a function of the
dimensionless wave height, H*/L.*, and the rela-
tive water depth, h/L, (L,=Deep water wave le-
ngth) for three types of wavemaker geometry. The
effects of the free wave are more pronounced in
shallow and intermediate water depths and for
waves of larger amplitude. Hinged wavemakers
of small drafts (large+d) are shown to produce
larger free waves than other types of wavemakers
in shallow and intermediate water depths. In deep
water, however, the free wave effects are more
pronounced for piston-type wavemakers. The am-
plitude of the free wave shown in Figure 6 is
10% of those of the first harmonic wave in deep
water.

Figure 7 shows the ratio of the wave amplitude
to the Stokes second- harmonic wave amplitude,
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Fig. 5. Comparison between the predicted and the
measured surface wave profiles at three di-
fferent locations

.20

al/a

/Lo

Fig. 6. Dimensionless amplitude of the free wave,
al/a, as a function of the relative water de-
pth

as'/a;’, over a range of relative water depths, h/L..
For flap-type wavemakers hinged on or above the
channel bottom (d/h20), the minimum values of
af /as oceur at shallow water depths between 0.
027 <h/L,<0.06, while the maximum values occur
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Fig. 7. Ratio of the free wave amplitude to Stokes
second-order wave amplitude as a function
of the relative water depth
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Fig. 8. Comparison of present theory with existing
theories for the ratio, a,'/a;" as a function
of the realtive water depth

at h/L,=0.16. For wavemakers hinged below the
channel bottom, however, the minimum values of
a'fay® occur at intermediate water depths between
0.06<h/L,<0.3, while the maximum values occur
in the shallow water region. Figure 7 also shows
the increasing values of a,'/a, in deep water (h/Lo
% 1.0) for piston-type wavemakers.

In Figure 8, the predicted values of a,/a,® by
Eqs.(48) are compared with the other theoretical
values. For piston-type wavemakers, the values
of a)lfa;® given by Egs. (48) are close to the values
predicted by the complete Lagrangian second-or-
der solution of Fontanet® in shallow and interme-
diate water depths. In deep water, however, the
present theory gives higher values of af /as than

KA



Fontanet's®, The solution of Daugaard™? is identi-
cal with the present theory, when the near-field
evanescent potential, ,®°, in Eq.(28) is neglected.
The shallow water approximate solution of Mad-
sen® gives values of a)Y/a;® close to the theories
of others only in shallow water region as would
be expected. The solution of Flick and Guza™
also shows close resemblance to that of Fontanet
® but gives slightly lower values of affas than
both the present theory and Fontanet's. These di-
screpancies seems to be due to the difference of
the number of the first-order evanescent modes
included in computation for second-order wave
components. [ Flick and Guza (13, Fig4) included
5 10 modes while present theory included 10 30
modes.] Flick and Guza(13, p 87)argued that Dar-
gaard neglected the effects of the first-order eva-
nescent eigenmodes. However, a numerical check
by the present theory showed that Daugaard®’
correctly included the first-order evanescent eige-
nmodes in his second-order solution, although he
neglected @, as did Madsen®.
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Fig. 9. Comparison of present theory with measu-
red data for the ratio, a,//a,®, as a function
of the relative water depth
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In Figure 9a, measured data for the ratio of
the free wave amplitudeto the Stokes second-or-
der wave, a)/a,°, reported by Burh Hansen and
Svendsen" are included. The scatter in the mea-
sured data is large, and no theory is confirmed
to be superior to others. The errors between most
of the data and the present complete theory are
within 25% of the predicted values. In Figure 9b,
the measured data for the ratio, a,/a,", reported
by Flick and Guza'™® for the case of a hinged wa-
vemaker are included. The present theory shows
good agreement with the data in shallow water.
For the relative water depth 0.12<h/L,<0.23, the
data show higher values than the predictions of
both theories.

4. CONCLUSIONS

A complete solution, exact to second-order, for
wave motion forced by a hinged wavemaker of
variable draft has been presented. Surface wave
profiles in particuler attention to the second-har-
monic free wave have been studied. For studying
the secondary free wave motion, the influence of
forcing by the nonlinear interaction between first-
order eigenmodes at the still water level is signi-
ficant and must not be neglected.

The amplitude of the second-harmonic free
wave is large in shallow water and becomes less
than 10% of the amplitude of the primary wave
in deep water. Wavemakers with shallow draft (la-
rge d) generate free waves of larger amplitude
in shallow and intermediate waver depths than
the wavemakers with deep draft (small d). Howe-
ver, the opposite is predicted by theory in deep
water. The ratio of the amplitude of the second-
harmonic free wave to the amplitude of the se-
cond-harmonic Stokes wave (a;/a,") has minima
between .027<h/L,<.06 for flap-type wavemakers
hinged on or above channel bottom and between
06<h/L,<.30 for wavemakers hinged below the
channel bottom. For flap-type wavemakers hinged
on or above channel bottom, the ratio of a,/a;
has maxima at h/L,=.16.

Theoretical predictions on both the spatial de-
pendence of the form and the meander phenome-
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non of the resultant wave envelope along the ho-
rizontal distance due to existence of the second-
harmonic free wave show good agreement with
measured data obtained in a large-scale wave
flume experiment.
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Appendix |. Coefficients for Second-Order Free Wave Potential, ,®".
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Appendix II. Notations

a, a3, a} First-order, second-order Stokes, and p
free wave amplitudes, respectively Q, Qn
d Height of wavemaker hinge above the
bottom Qi Gm
e Height of wavemaker piston measured
above the wavemaker hinge
g Gravitational acceleration S/2
H Wave height T
i j Unit horizontal and vertical vectors, U(+)
respectively u, v
h Still water depth of the channel
. 2n ‘ . Xy
k(= —), kn Wave number for the linear propa-

gating and evanescent eigenmodes,
respectively

L, L= —&—Tg) Wavelengths in finite depth and

Ly

N, N

2n

in deep water, respectively
Beat (meander) wavelength in the se-
cond-harmonic wave O
Normatizing constants for the linear
and second-order eigenfunctions, res-
pectively

B B

for d20 519

for d<0

for d20 51

for d<0 ’

for d=20

for d<0 (51
{511
(517
{51k)
(511
(51m)
(51In)
(510)
(51p)

pressure

Orthonormal eigenfunctions for the
second-order solution

Propagating and evanescent wave nu-
mber for the second-order free wave
potential

Wavemaker stroke

Wave period

Heaviside step function

Eulerian horizontal and vertical velo-
city components, respectively
Horizontal and vertical Cartesian coor-
dinate axes, respectively, with origin
located at undisturbed water level at
wavemaker

Greek

Dimensionless eigenvalues at first-or-
der

Dimensionless eigenvalues at second-
order
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