532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm

  • 투고 : 2010.07.16
  • 심사 : 2010.09.06
  • 발행 : 2010.09.30

초록

레이저 용발법에 의한 금속 표면 제염특성을 평가하였다. 레이저로는 파장 532 nm, 펄스에너지 150 mJ, 펄스폭 5 ns의 큐스위치 Nd:YAG를 적용하였고, 금속 표면에 $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ 그리고 $CeO_2$를 오염시켜 이들의 제염 특성을 평가하였다. 제염 변수로는 레이저 적용횟수, 레이저 에너지 밀도 및 레이저 조사 각도 특성을 평가하였으며 각각 8, 13.3 J/$cm^2$$30^{\circ}$의 최적 조건을 확인하였다. 제염 효율은 오염성분의 비점과 관련이 있었으며 $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$ 순이었다. 또한 여러 에너지 밀도 조건에서 스테인레스 스틸 재질의 식각 깊이 제어 특성을 규명하였다.

Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

키워드

참고문헌

  1. 양영미, 최왕규, 오원진, 유승곤, "우라늄 화합물로 오염된 금속폐기물의 전해제염" 방사성폐기물학회지, 1(1), 11 (2003).
  2. M. A. Blessa, E. B. Borghi, S. P. Ali and P. J. Morando," Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids", J. of Nuclear Materials, 229, 115 (1996). https://doi.org/10.1016/0022-3115(95)00201-4
  3. J. Meijer, "Laser beam machining (LBM), state of the art and new oppertunities", J. of materials process. Technol., 149, 2 (2004). https://doi.org/10.1016/j.jmatprotec.2004.02.003
  4. L., Li "The potential role of high power lasers in nuclear decommissioning", Nucl. Energy 41, 397(2002). https://doi.org/10.1680/nuen.41.6.397.38991
  5. A. L. Thomann, A. B. Wegscheider, C. Boulmer-Leborgne, A. Pereira, P. Delaporate, M. Sentis and T. Sauvage, "Chemical and structural modifications of laser treated iron surfaces: investigation of laser processing parameters", Applied Surface Science 230, 350 (2004). https://doi.org/10.1016/j.apsusc.2004.02.060
  6. A. C. Tam, W. P. Leung, W. Zapka and W. Ziemlich, "Laser cleaning techniques for the removal of surface particulates", J. Appl. Phys. 71, 3515 (1992). https://doi.org/10.1063/1.350906
  7. T. Dimogerontakis, R. Oltra and O. Heintz, Appl. Phys. 81, 1173 (2005). https://doi.org/10.1007/s00339-004-3143-7
  8. M. S. Reafique, M. T. Firdos, K. Aslam, M. S. Anwar, M. Imran, and H. Latif, Laser Physics. 17, 1138 (2007). https://doi.org/10.1134/S1054660X0709006X
  9. L. M. Cabalin, D. Romero, J. M. Baena, J. J. Laserna, "Saturation effects in the laser ablation of stainless steel in air at atmospheric pressure". Fresenius J. Anal. Chem. 365, 404 (1999). https://doi.org/10.1007/s002160051631
  10. B. Baigalmaa, H. J. Won, J. K. Moon, C. H. Jung and J. H. Hyun, "A comprehensive study on the laser decontamination of surfaces contaminated with $Cs^{+}$ ion", Applied Radiation and Isotopes, 67, 1526 (2009). https://doi.org/10.1016/j.apradiso.2009.02.055
  11. Y. Fukui, R. Ogawa, N. Ishijima and N. Kenichi "Development of laser decontamination", JNC TN9410 99-014 (1999).
  12. Ph. Delaporate, M. Gastaud, W. Marine, M. Semtis, O. Uteza, P. Thouvenot, J. L. Alcaraz, J. M. Le Samedy and D. Blin, "Dry eximer laser cleaning applied to nuclear decontamination", Applied Surface Science 298, 208 (2003).
  13. Dieter, "Laser Processing and Chemistry", P 190, Springer, 3rd Revised and Enlarged Edition, 2000.
  14. M. S. Lafique, R. M. Khaleequr, T. Fridos, K. Aslam, A.M. Shabaz and H., Latif, "XRD and SEM analysis of a laser irradiated cadmium:, laser Physics, 17 (9), 1138 (2007). https://doi.org/10.1134/S1054660X0709006X