• Title/Summary/Keyword: Screen printing technology

Search Result 240, Processing Time 0.034 seconds

Machining of the Inject Mould for Forming the Dot Pattern of LGP of TFT-LCD (TFT-LCD의 도광판 패턴 사출성형용 금형가공)

  • 박동삼;최영현;하민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1215-1219
    • /
    • 2003
  • Light Guide Panel(LGP) is a key part of backlight unit(BLU) which transforms line-light of lamp to surface-light. Dot pattern is formed on the injected LGP surface by screen printing. This dot pattern is composed of several ten thousands micro dots of diameter 150-180$\mu\textrm{m}$ or so. The dot patterning by screen printing causes low productivity and low performance of TFT-LCD. This research develops the micromachining technology for LGP mould which could form micro dot pattern by injection molding, removing the existing screen printing process.

  • PDF

The Study on the embedded capacitor using thick film lithography (후막 리소그라피 공정을 이용한 내장형 캐패시터 개발에 관한 연구)

  • Yoo, Chan-Sei;Park, Seong-Dae;Park, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.342-345
    • /
    • 2002
  • As the size of chip components and module decreases, new patteming method for fine line and geometry is needed. So far, in LTCC(Low Temperature Cofired Ceramic) process, screen printing method has been used generally. But screen printing method has some disadvantages as follows. First, the geometry including line, vias, etc. smaller than $100{\mu}m$ can't be evaluated easily. Second, the patterned dimension is different from designed value, which makes distortion in charactersitics of not only chip components but also modules. Thick film lithography has advantages of thick film screen printing process, low cost and thin film process, fine line feasibility. Using this method, the line with $30{\mu}m$ width and the geometry with expected dimension can be evaluated. In this study, the fine line with $35{\mu}m$ line/space is formed and the embedded capacitor with very small tolerance is developed using thick film lithography.

  • PDF

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology (쾌속조형과 스크린 인쇄기술을 이용한 빌드업인쇄회로기판의 제조공정기술개발)

  • 조병희;정해도;정해원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2000
  • Generally, the build-up printed circuit board manufactured by the sequential process with etching, plating, drilling etc. requires many types of equipments and lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing prototype in the developing stage. In this study, we introduce a screen printing technology to prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as the formation of liquid resin thin layer, the solidification by UV/IR light, and via filling with conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with to the conventional process.

  • PDF

Study on the Direct Printing of Natural Indigo Dye on Cotton Fabric Using Arabic Gum (아라비아 검을 이용한 천연 쪽 염료의 면직물에 대한 직접 날염 연구)

  • Li, Longchun;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.212-223
    • /
    • 2017
  • This research investigated the screen printing method for natural indigo dye on cotton fabric. We examined four types of thickening agents (arabic gum, guar gum, indalca, and CMC) based on their ability to retard the oxidation of natural indigo print paste while the paste remained on the screen frame. The results indicated that the retardation of arabic gum towards oxidation was the greatest among the four types of thickening agents. The highest K/S value of the printed cotton was observed with a dye concentration of 50g/L fermented indigo powder. The best printing results were obtained when the duration of dye efficiency was tested for the 10 minutes of the dye paste remaining on the screen with a thickening agent concentration of 26.56% that represented 530 cps viscosity. The test of colorfastness to washing and rubbing of the printed cotton resulted in grade 5, and the colorfastness to sunlight resulted in grade 4. Chinese traditional Naminwhapo printing was reproduced on cotton fabric using the natural indigo printing method derived from this study.

Fabrication of Thick Film Capacitors with Printing Technology (인쇄기법을 이용한 후막 캐패시터 제작)

  • Lee, Hye-Mi;Shin, Kwon-Yong;Kang, Hyung-Tae;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.100-101
    • /
    • 2007
  • Polymer thick film capacitors were successfully fabricated by using ink-jet printing and screen printing technology. First, a bottom electrode was patterned by ink-jet printing of a nano-sized silver ink. Next, a dielectric layer was formed by the screen printing, then a top electrode was pattern by ink-jet printing of a nano-sized silver ink. The printed area of the dielectric layers were changed into $2{\times}2m^2$and $4{\times}2m^2$, and also the area of the electrodes were patterned with $1{\times}1mm^2$ and $1{\times}3mm^2$. The thickness of the printed dielectric layer was ranged from 1.1 to $1.4{\mu}m$. The analysis of capacitances verified that the capacitances was proportional to the area of the printed electrode. The capacitances of the fabricated capacitors resulted in one third of the calculated capacitances.

  • PDF

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

Development of Build up Multilayer Board Rapid Manufacturing Process Using Screen Printing Technology (스크린인쇄 법을 이용한 Build-up다층인쇄회로기판의 쾌속제조공정 기술개발)

  • 조병희;정해도;정해원
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 1999
  • Generally, many equipments and a long lead time ale required to manufacture the build-up multilayer board through various processes such as etching, plating, drilling etc. Wet process is suitable for mass production, however it is not adequate for manufacturing prototype in developing stage. In this study, a silk screen printing technology is introduced to make a prototype build-up multilayer board. As for the material photo/thermal curable resin and conductive paste are used for forming dielectric and conductor. And conductive paste fills vias for interconnecting each layer, and also is used for circuit patterning by silk screen technology. Finally, the basic concept and the possibility of build-up multilayer board prototype is proposed and verified as a powerful approach, compared with the conventional processes.

  • PDF

A Development on the Non-Photomask Plate Making Technology for Screen Printing (포토 마스크가 필요없는 스크린 제판 기술 개발)

  • Koo, Yong-Hwan;Ahn, Suk-Chul;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.65-75
    • /
    • 2010
  • Environmentally friendly, stencil and screen printing for cost-effective for maskless. In this study, UV -LED light source for the dispersion characteristics and high competence photoresist coating was prepared. Wavelength of 365nm UV-LED exposure device using the maskless lithography, 1.7kgf/$cm^2$ $2600mmH_2O$ the injection pressure and the suction pressure by using a dry photoconductor symptoms were dry emulsion on the market as a result, curing properties and adhesion, hardness, solvent resistance and excellent reproduction of fine patterns and ecological stencil technology was available and could be confirmed as a possibility.