• Title/Summary/Keyword: Scientific problem solving

Search Result 293, Processing Time 0.026 seconds

The Effects of Applying Cooperative Making Problems and Solving Problems for Formative Assessment at Finish Stage of Class on Elementary Students' Science Academic Achievement and Scientific Attitude (과학교과에서 협동적 형성평가 문제 만들기 및 해결을 통한 학습 정리 활동이 초등학생의 학업성취도 및 과학적 태도에 미치는 영향)

  • Kim, So-jeong;Lee, Gyuho
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.4
    • /
    • pp.339-351
    • /
    • 2018
  • The purpose of this study is to examine the effect of cooperative making problems and solving problems for formative assessment at finish stage on science academic achievement and scientific attitude. This study is conducted in 51 sixth-graders of two classes. The experimental group was provided with a teaching-learning course based on cooperative making problem and solving problem at finish stage. And the control group was provided with general classes based on the contents in teacher's guidebooks. The experiment was performed with the second and third units of the sixth grade, for about two month and obtained the following results: First, students prefer to make supply-type items than multiple choices. And by the Bloom's revised taxonomy of educational objectives, students prefer to make the problem types of 'Factual Knowledge' and 'Conceptual Knowledge'. Also students prefer to make the problem types of 'Understanding' and 'Applying'. Second, cooperative problem making and solving problems at finish stage has same effect on academic achievement in comparison to teacher-driven activity. Third, the experimental group made statistically significant difference in self-efficiency, contrary to the general science classes. Especially, it turned out that a meaningful effect was discovered to a cooperativity, openness. Finally, it turned out that many students thought cooperative making problem and solving problem at finish stage gave the help approving their cooperativity and openness at the investigation of awareness.

The Effects of Creative Product Performance on the Scientific Attitude, Scientific Self Efficacy and Creative Problem Solving Ability of Science-Gifted Elementary Student (창의 산출물 활동이 초등 과학영재반 학생들의 과학적 태도, 과학 자기효능감, 창의적 문제해결력에 미치는 효과)

  • Jeong, Hee-jin;Lee, Hyeong-cheol
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.193-202
    • /
    • 2018
  • The purpose of this study was to examine the effects of creative product performance on scientific attitude, scientific self efficacy and creative problem solving ability of science-gifted elementary students. The subjects of the study were 20 students who were enrolled in science-gifted class of G elementary school. 8 period lessons of the creative product performance were given to the students after simulated creative product performance lessons. Pre and post tests were done before and after executing lessons to assess the change of students' scientific attitude, scientific self efficacy and creative problem solving ability. The findings and results of this study can be summarized as follows: First, creative product performance had meaningful effect in improving scientific attitude of science-gifted students. Second, creative product performance had meaningful effect in improving scientific self efficacy of science-gifted students. Third, creative product performance had meaningful effect in improving creative problem solving ability of science-gifted students. From questionnaire interview, we could know that subject students had difficulties in carrying out the performance at first but after the performance they came to have favorable impression and high satisfaction level about the performance.

The Effect of Problem-Centered Learning Based STEAM Field Experience Learning Program on Science Process Skills, Creative Problem Solving Ability, and Scientific Attitude of Gifted Students in Elementary Science (문제중심학습 기반 STEAM 현장체험학습 프로그램이 초등과학 영재의 과학 탐구 능력, 창의적 문제해결력 및 과학적 태도에 미치는 영향)

  • Ko, Dong Guk;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.113-125
    • /
    • 2021
  • In this study, a problem-centered learning based STEAM field experience learning program was developed and the effects of applying it were investigated. The program was composed of 8 sessions by using problem-centered learning education method and integrating STEAM elements between disciplines. The contents of program are as follow. In the step of sharing problems and making a problem-solving plan, they understood the various examples and meanings of endangered species, explored the project activities, and made an inquiry plan. In the search and re-exploration phase, a smart device was used to investigate the appearance, habitat environment and cause of extinction for Clithon retropictus, and a site inquiry plan was established for each group. Then, they moved to the field to explore brackish-headed gallops and discuss ways to protect endangered species. In the step of creating a solution, a web-based report was produced as the final product using smart devices based on the results of the inquiry. In the presentation and evaluation stage, the produced web-based report was used to present each group, conduct mutual evaluation, and organize project activities. The developed program was applied to 6th grade 29 students enrolled in the J University Gifted Education Center. In order to find out the effectiveness of the program, tests of science process skill, creative problem-solving ability, and scientific attitude were conducted before and after of program learning, and the results were statistically analyzed by t-test. In addition, a STEAM program satisfaction test was conducted after project in order to find out the satisfaction of the class. As a result of application of the program, the results were significantly improved in openness, criticism, and creativity among the sub-factors of creative problem-solving ability and scientific attitude. Satisfaction with the STEAM program was also high, but no significant result was found in science process skill. Therefore, the program of this study could be influenced on improvement of creative problem-solving ability and scientific attitude of gifted students in elementary science.

The High School Students' Problem Solving Patterns and Their Features in Scientific Inquiry (고등학생의 탐구 사고력 문제 해결 과정에 나타난 유형과 특징)

  • Kim, Ik-Gyun;Hwang, Yu-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 1993
  • The high school students' problem solving patterns and their features in scientific inquiry, especially on controlling variables and stating hypothesis have been investigated. The 8 problems on controlling variables and stating hypothesis were selected out of the scientific inquiry area in the experimental tryout of Aptitude Assessment for College Education, and had been used to find the patterns and their features. The results of findings are as follows: There were seven patterns in the process of solving problems. Five of seven patterns were found in right answers and four patterns in wrong answers. Two patterns were found in both right and wrong answers. Some students could solve the problems even though they did not understand the elements of the scientific inquiry, controlling variables and stating hypothesis. The false application of physics concepts, misunderstanding about the elements of the scientific inquiry and using unrelated experience and conjectures were the features of students' wrong answers. On the other hand, the right application of physics concepts, understanding and applying the elements right, infering answers from the tables and figures on statements of suggested problems were the features of right answers. The further studies on this kind may helpful to find the higher mental abilities related to scientific inquiry and to develop tools for testing students' scientific inquiry thinking skills.

  • PDF

Development and Application of the CPS Instructional Program for the Astronomy Section of Highschool Science (고등학교 과학 천문분야의 CPS수업프로그램 개발 및 적용)

  • Shin, Seon-Young;Kim, Soon-Shik;Choi, Gwang-Sun;Choi, Sung-Bong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2011
  • The purpose of this study was to develop and apply a creative problem-solving(CPS) program of instruction for earth science. After the earth science sections of high school science textbooks were analyzed, a theme of instruction was selected from the first-year unit 'the origin and evolution of the universe', and a CPS model of instruction. 32 high school sophomores and juniors who were the members of an astronomy club in the city of Gimhae, South Gyeongsang Province, participated in the program, and they took a test in scientific creative problem-solving skills before and after the experiment to grasp the effect of the program on their creative problem-solving skills. Besides, a survey was conducted to find out their awareness of the program. As a result of implementing the CPS program based on the CPS model of instructional for the unit 'the origin and evolution of the universe', the program turned out effective at boosting the scientific creative problem-solving skills of the students. To be specific, they made a significant progress in validity and scientificity, but that's not the case for elaboration and originality. When their awareness of the CPS program was checked, they expected the program to spark their interest in astronomy and be beneficial to the improvement of their creative problem-solving skills, but they didn't rate group activities high on the ground that the group activities weren't performed smoothly. The findings of the study suggest that the CPS instructional program for the unit 'the origin and evolution of the universe' based on the CPS model of instruction had a good effect on the improvement of the scientific creative problem-solving skills of the students.

A New Approach to the Science Education Assessment Using Partial Credits to Different Science Inquiry Problem Solving Process Types

  • Lee, Hang-Ro;Lim, Cheong-Hwan
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2002
  • Reasonable and reliable assessment method is one of the most important issues in science education, Partial credits method is an effective tool for assessing students' science inquiry problem solving. The purposes of this study were to classify the Problem solving types based on the analysis of the thinking Process, and how much the related science concept and the science process skills were used in solving science inquiry problems, and to describe the possibility and rationality of the assessment method that gives partial credit 128 high school seniors were selected and their answers were analyzed to identify science concepts they used to solve each problem, and the result was used as the criterion in the scientific concept test development. Also, to study the science inquiry problem solving type, 152 high school seniors were selected, and protocols were made from audio-taped data of their problem solving process through a think-aloud method and retrospective interviews. In order to get a raw data needed in statistical comparison of reliability, discrimination and the difficulty of the test and the production of the regression equation that determines the ratio of partial credit, 640 students were selected and they were given a science inquiry problem test, a science process skills test, and a scientific concept test. Research result suggested it is more reasonable and reliable to switch to the assessment method that applies partial credit to different problem solving types based on the analysis of the thinking process in problem solving process, instead of the dichotomous credit method.

Effects of Future Problem Solving Program on Creativity and Scientific Attitude (미래문제해결 프로그램이 창의성과 과학적 태도에 미치는 효과)

  • Kim, Dae-Sung;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The purpose of this study was to examine the effects of Future Problem Solving Program on creativity and scientific attitude. For this study the 4 grade, 2 class was divided into a research group and a comparative group. The class was pre-tested in order to ensure the same standard. The research group had the science class with FPSP, and the comparative group had the class with teacher centered lectures for 9 classes in 10 weeks. The FPSP was focused on finding problems, finding key problems, creating solutions, selecting the standard of judgement, making alternative solutions, and learning creative steps of solutions consisting of development of action planning. To prove the effects of this study, creativity was split up according to fluency, originality, abstractness, accuracy, and openness. Also, scientific attitude consisted of honesty, patience, curiosity, preparedness, autonomy, criticism, and openness. The results of this study are as follows. First, the science class with FPSP with finding problems, finding key problems, and creating solutions had the effect of developing the scientific creativity; fluency, originality, abstractness of the title, accuracy, and openness. Second, the FPSP had the effect of developing the scientific attitude. Students made ideas and solved the problems through divergent thinking and convergent thinking. During the class it had the effect of developing the scientific attitude; honesty, patience, curiosity, preparedness, autonomy, criticism, and openness. As a result, the elementary science class with FPSP had the effects of developing scientific creativity and scientific attitude. It means the science class with FPSP has potential possibilities and value to develop scientific creativity and scientific attitude.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.

Analysis on the Relationship Between the Construct Level of Analogical Reasoning and the Construction of Explanatory Model Observed in Small Group Discussions on Scientific Problem Solving (과학적 문제해결을 위한 소집단 논의 과정에서 나타난 비유적 추론의 생성 수준과 설명적 모델 생성의 관계 분석)

  • Ko, Minseok;Yang, Ilho
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.522-537
    • /
    • 2013
  • This study analyzed the relationship among the construct level of analogical reasoning, prediction and uncertainty, and the construction of an explanatory model that were produced during small group discussions for scientific problem solving. This study was participated in by 8 students of K University divided into 2 teams conducting scientific problem solving. The participants took part in discussions in groups after achieving scientific problem solving individually. Through individual interviews afterwards, changes in their thinking through discussion activities were looked into. The results are as follows: The analogy at the Entities/Attributes level was used to make people clearly understand the characteristics of certain objects or entities in the discussions. The analogy at the Configuration/Motion level that was produced during the discussions ensured other participants to predict the results of problem solving. The analogy at the Mechanism/Causation level changed the structure of problem situations either to help other participants to reconstruct the explanatory model or to come up with a new situation that was never been through before to justify the created mechanism and through this, the case of creating Thought Experiments during the discussions were observed. if looking into the changes of analogies, each individual's analogic paradigm during the discussions were shown as production paradigm, reception-production paradigm, production-reception paradigm, and reception paradigm. The construction and reconstruction of the explanatory model were shown in analogic production paradigm, and in the reception paradigm of an analogy, participants changed their predictions or their certainty.

The Effects of Scientific Inquiry Class Using Data Measured with Digital Inquiry Tools on Elementary School Students' Competencies (디지털 탐구도구로 측정한 데이터를 활용하는 과학 탐구 수업이 초등학생의 역량에 미치는 영향)

  • Jeong, Eunju;Son, Jeongwoo
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.205-213
    • /
    • 2020
  • The purpose of this study is to investigate the effects of elementary school students' knowledge and information processing competence and collaborative problem-solving ability in scientific inquiry class using data measured with digital inquiry tools. To this end, three classes of 5th grade elementary schools in S-city, Gyeongnam were selected as experimental groups and three classes as control groups. The control group conducted traditional lecture-style classes, and the experimental group conducted scientific inquiry classes using scientific data. The following results were obtained through questionnaires after class. First, science inquiry classes using scientific data helped elementary school students improve their knowledge and information processing competence. Second, scientific inquiry classes using scientific data improved elementary school students' cooperative problem-solving ability. From the above results, it was found that scientific inquiry classes using scientific data are needed to improve the knowledge information processing competence and cooperative problem solving ability of elementary school students. Based on this research, it is necessary to study a specific teaching and learning environment that can activate scientific inquiry class using data measured with digital inquiry tools in the future.