Browse > Article
http://dx.doi.org/10.14697/jkase.2013.33.2.522

Analysis on the Relationship Between the Construct Level of Analogical Reasoning and the Construction of Explanatory Model Observed in Small Group Discussions on Scientific Problem Solving  

Ko, Minseok (Korea National University of Education)
Yang, Ilho (Korea National University of Education)
Publication Information
Journal of The Korean Association For Science Education / v.33, no.2, 2013 , pp. 522-537 More about this Journal
Abstract
This study analyzed the relationship among the construct level of analogical reasoning, prediction and uncertainty, and the construction of an explanatory model that were produced during small group discussions for scientific problem solving. This study was participated in by 8 students of K University divided into 2 teams conducting scientific problem solving. The participants took part in discussions in groups after achieving scientific problem solving individually. Through individual interviews afterwards, changes in their thinking through discussion activities were looked into. The results are as follows: The analogy at the Entities/Attributes level was used to make people clearly understand the characteristics of certain objects or entities in the discussions. The analogy at the Configuration/Motion level that was produced during the discussions ensured other participants to predict the results of problem solving. The analogy at the Mechanism/Causation level changed the structure of problem situations either to help other participants to reconstruct the explanatory model or to come up with a new situation that was never been through before to justify the created mechanism and through this, the case of creating Thought Experiments during the discussions were observed. if looking into the changes of analogies, each individual's analogic paradigm during the discussions were shown as production paradigm, reception-production paradigm, production-reception paradigm, and reception paradigm. The construction and reconstruction of the explanatory model were shown in analogic production paradigm, and in the reception paradigm of an analogy, participants changed their predictions or their certainty.
Keywords
analogical reasoning; explanatory model construction; scientific problem solving; thought experiment;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Rivet, A. E., & Kastens, A. K. (2012). Developing a construct-based assessment to examine students'analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-744.   DOI   ScienceOn
2 Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache、r, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.   DOI   ScienceOn
3 Steedle, J. T., & Shavelson, R. J. (2009). Supporting valid interpretations of learning progression level diagnoses. Journal of Research in Science Teaching, 46(6), 699-715.   DOI   ScienceOn
4 Stephens, L., & Clement, J. (2006). Designing classroom thought experiments: What we can learn from imagery indicators and expert protocols. In Proceedings of the NARST 2006 Annual Meeting, San Francisco, CA.
5 강은미, 신동훈, 권용주 (2006). 과학 지식 생성 학습을 통한 초등학생들의 가설 지식 생성 능력의 발달. 한국과학교육학회지, 25(3), 257-270.
6 강훈식, 서지혜 (2012). 포화 용액 개념 학습에서 비유표현 방식과 언어적 학습 양식에 따른 비유 사용 수업의효과. 한국과학교육학회지, 32(2), 402-414
7 강훈식, 천지현 (2010). 초등학생의 학습접근양식에따른 비유 만들기 특성, 대응 관계 이해도, 대응 오류, 비유 만들기에 대한 인식. 한국과학교육학회지, 30(5), 668-680.
8 고성자, 최선영, 여상인 (2007). 과학 수업에서 초등교사가 사용하는 비유 유형에 대한 사례 연구. 초등과학교육, 26(3), 276-285.
9 권용주, 정진수, 박윤복, 강민정 (2003). 선언적 과학지식의 생성 과정에 대한 과학철학적 연구-귀납적, 귀추적, 연역적 과정을 중심으로-. 한국과학교육학회지, 23(3), 215-228.
10 권혁순, 최은규, 노태희 (2004). 화학 교육에서 사용되는 비유에 대한 학생들의 이해도 및 비유 사용의 제한점. 한국과학교육학회지, 24(2), 287-297.
11 김유정, 문세정, 노태희 (2009). 크로마토그래피 개념에 대해 중학교 과학영재가 만든 비유의 유형과 대응 오류및 비유 만들기 활동에 대한 인식 조사. 한국과학교육학회지, 29(8), 861-873.
12 노태희, 양찬호, 강훈식 (2009). 포화 용액 개념에 대해 초등 과학 영재와 일반 학생들이 만든 비유의 특성과대응 관계 이해도 및 대응 오류. 초등과학교육, 28(3). 292-303.
13 양찬호, 김경순, 노태희 (2010). 과학 수업에서 비유의사용 방식이 학생들의 개념학습에 미치는 영향. 한국과학교육학회지, 30(8), 1044-1059.
14 박은미, 강순희 (2006). 유사 경험의 제공이 귀추에 의한 가설 성정에 미치는 효과. 한국과학교육학회지, 26(3),356-366.
15 변춘수, 김희백 (2010). 학생 중심 비유 활용 수업이중학생의 광합성 개념 이해에 미치는 영향. 한국과학교육학회지, 30(2), 304-322.
16 양일호, 정진수, 권용주, 정진우, 허명, 오창호 (2006).과학자의 과학지식 생성 과정에 대한 심층 면담 연구. 한국과학교육학회지, 26(1), 88-98.
17 유지연, 노태희 (2012). 이해와 검토 단계를 강조한 비유 실험 설계 전략을 활용한 탐구수업에서 나타나는 과학영재 사이의 언어적 상호작용 분석. 한국과학교육학회지,32(4). 671-685
18 유희원, 함동철, 차현정, 김민석, 김희백, 유준희, 박현주, 김찬종, 최승언 (2012). 달의 위상 변화에 대한 과학적모형 구성 수업에서 나타나는 과학 영재들의 모형 생성 및발달과정. 영재교육연구, 22(2), 291-315.
19 이신영, 김찬종, 최승언, 유준희, 박현주, 강은희, 김희백 (2012). 소집단 상호작용에 따른 심장 내 혈액 흐름에대한 소집단 모델 발달 유형과 추론 과정 탐색. 한국과학교육학회지, 32(5), 805-822.
20 이안나, 권용주, 정진수, 양일호 (2007). 동물 행동학자의 연구 활동에서 나타나는 연구 단계, 사고과정, 행동양식 및 생성 지식에 관한 연구. 한국생물교육학회지,35(3), 361-373.
21 최선영, 이은정, 강호감 (2006). 초등과학 학습에서의창의력 향상을 위한 시각적 비유학습의 효과. 한국과학교육학회지, 26(2), 167-176.
22 Ball, L. J., & Christensen, B. T. (2009). Analogical reasoning and mental simulation in design: Two strategies linked to uncertainty resolution. Design Studies, 30(2), 169- 186.   DOI   ScienceOn
23 Bearman, C. R., Ball, L. J., & Ormerod, T. C. (2007). The structure and function of spontaneous analogising in domain-based problem solving. Thinking & Reasoning, 13(3), 273-294   DOI   ScienceOn
24 Berland, L. K., & Reiser, B. (2008). Making sense of argumentation and explanation. Science Education, 93(1), 26 55.
25 Blanchette, I., & Dunbar, K. (2000). How analogies are generated: the roles of structural and superficial similarity. Memory & Cognition, 28(1), 108-124.   DOI
26 Christensen, B. T., & Schunn, C. D. (2009). The role and impact of mental simulation in design, Cognitive Psychology, 23(3), 327-344.   DOI   ScienceOn
27 Clement, J. (2009). The role of imagistic simulation in scientific thought experiments. Topics in Cognitive Science, 1(4), 686-710.   DOI   ScienceOn
28 Clement, J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12(4), 563-586.   DOI   ScienceOn
29 Clement, J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053.   DOI   ScienceOn
30 Clement, J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht: Springer.
31 Coll, R. K. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(2), 183-198.   DOI   ScienceOn
32 Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: the case of analogy. Trends in Cognitive Sciences, 8(5), 334-339.
33 Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72.   DOI   ScienceOn
34 Evans, J. St. B. T. (2002). Logic and human reasoning: An assessment of the deduction paradigm. Psychological Bulletin, 128(6), 978-996.   DOI   ScienceOn
35 Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170.   DOI   ScienceOn
36 Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 45-56   DOI   ScienceOn
37 Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.   DOI   ScienceOn
38 Gobert, J. D., & Buckly, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.   DOI   ScienceOn
39 Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340   DOI   ScienceOn
40 Griffith, T. W., Nersessian, N. J., & Goel, A. (2000). Function-follows-form transformations in scientific problem solving. In Proceedings of the Cognitive Science Society 22, 196-201. Mahwah, N. J. : Lawrence Erlbaum.
41 Klassen, S. (2006). The science thought experiments: How might it be used profitably in the classroom?. Interchange, 37(1-2), 77-96.   DOI
42 Jee, B. D., Uttal, D. H., Gentner, D., Manduca, C., Shipley, T. F., Tikoff, B., Ormand, C. J., & Sageman, B. (2010). Commentary: Analogocal thinking in geoscience education. Journal of Geoscience Education, 58(1), 2-13.   DOI   ScienceOn
43 Justi, R., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4). 369-387.
44 May, D. B., Hammer, D., & Roy, P. (2006). Children's analogical reasoning in a third-grade science discussion. Science Education, 90(2), 316-330.   DOI   ScienceOn
45 Magnani, L. (1999). Model-base creative abduction. In L. Magnani, N. J. Nersessian, & R. Thagard (Eds.), Modelbased reasoning in scientific discovery(pp.219-238). New York, NY: Kluwer Academic/Plenum Pulishers.
46 Mualem, R., & Eylon, B. S. (2010). Junior high school physics: Using a qualitative strategy for successful problem solving. Journal of Research in Science Teaching, 47(9), 1094-1115.   DOI   ScienceOn
47 Nersessian, N. J., & Chandrasekharan, S. (2009). Hybrid analogies in conceptual innovation in science. Cognitive Systems Research, 10(3), 178-188.   DOI   ScienceOn
48 Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distiction?. Science Education, 95(4), 627-638.   DOI   ScienceOn
49 Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489-506.   DOI