• Title/Summary/Keyword: Schrodinger-type equation

Search Result 7, Processing Time 0.021 seconds

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling (양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발)

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2002
  • A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

Quantization Rule for Relativistic Klein-Gordon Equation

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4233-4238
    • /
    • 2011
  • Based on the exact quantization rule for the nonrelativistic Schrodinger equation, the exact quantization rule for the relativistic one-dimensional Klein-Gordon equation is suggested. Using the new quantization rule, the exact relativistic energies for exactly solvable potentials, e.g. harmonic oscillator, Morse, and Rosen-Morse II type potentials, are obtained. Consequently the new quantization rule is found to be exact for one-dimensional spinless relativistic quantum systems. Though the physical meanings of the new quantization rule have not been fully understood yet, the present formal derivation scheme may shed light on understanding relativistic quantum systems more deeply.

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.295-306
    • /
    • 2024
  • We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term: $$\begin{cases}-{\Delta}u+V(x)u={\lambda}f(u){\quad} x{\in}{\Omega},\\{\qquad}{\qquad}{\quad}u=0, {\qquad}\;x{\in}\partial{\Omega},\end{cases}$$, where 0 ∈ Ω is a bounded domain in ℝN , N ≥ 1, with a smooth boundary ∂Ω, f ∈ C[0, ∞), V ∈ L(Ω) and λ is a positive parameter. In particular, when f(s) > 0 for 0 ≤ s < σ and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.355-367
    • /
    • 2023
  • Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$\{{-{\Delta}u+V(x)u={\lambda}{\frac{f(u)}{u^{\beta}}},\;x{\in}{\Omega}, \atop u=0,\;x{\in}{\partial}{\Omega},$$ where 0 ∈ Ω is a bounded domain in ℝN, N ≥ 1, with a smooth boundary ∂Ω, β ∈ [0, 1), f ∈ C[0, ∞), V : Ω → ℝ is a bounded function and λ is a positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

Control of Short-Channel Effects in Nano DG MOSFET Using Gaussian-Channel Doping Profile

  • Charmi, Morteza
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.270-274
    • /
    • 2016
  • This article investigates the use of the Gaussian-channel doping profile for the control of the short-channel effects in the double-gate MOSFET whereby a two-dimensional (2D) quantum simulation was used. The simulations were completed through a self-consistent solving of the 2D Poisson equation and the Schrodinger equation within the non-equilibrium Green’s function (NEGF) formalism. The impacts of the p-type-channel Gaussian-doping profile parameters such as the peak doping concentration and the straggle parameter were studied in terms of the drain current, on-current, off-current, sub-threshold swing (SS), and drain-induced barrier lowering (DIBL). The simulation results show that the short-channel effects were improved in correspondence with incremental changes of the straggle parameter and the peak doping concentration.

EXISTENCE OF A POSITIVE SOLUTION TO INFINITE SEMIPOSITONE PROBLEMS

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • We establish an existence result for a positive solution to the Schrödinger-type singular semipositone problem: $-{\Delta}u\,=\,V(x)u\,=\,{\lambda}{\frac{f(u)}{u^{\alpha}}}$ in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN , N > 2, λ ∈ ℝ is a positive parameter, V ∈ L(Ω), 0 < α < 1, f ∈ C([0, ∞), ℝ) with f(0) < 0. In particular, when ${\frac{f(s)}{s^{\alpha}}}$ is sublinear at infinity, we establish the existence of a positive solutions for λ ≫ 1. The proofs are mainly based on the sub and supersolution method. Further, we extend our existence result to infinite semipositone problems with mixed boundary conditions.