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Based on the exact quantization rule for the nonrelativistic Schrédinger equation, the exact quantization rule
for the relativistic one-dimensional Klein-Gordon equation is suggested. Using the new quantization rule, the
exact relativistic energies for exactly solvable potentials, e.g. harmonic oscillator, Morse, and Rosen-Morse 11
type potentials, are obtained. Consequently the new quantization rule is found to be exact for one-dimensional
spinless relativistic quantum systems. Though the physical meanings of the new quantization rule have not
been fully understood yet, the present formal derivation scheme may shed light on understanding relativistic

quantum systems more deeply.
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Introduction

Since the early days of quantum mechanics, a set of qu-
antization rules has been sought after. These rules supple-
ment the correspondence principle and provide the quantum
version of any given classical theory or a classical analog to
a quantum system. Therefore, a quantization rule can be
regarded as a more understandable description of a quantum
system. Meanwhile there have been numerous efforts to find
the exact solutions of quantum systems, which attracted
much attention in the development of quantum mechanics.
Along this line, the exact quantization rule for nonrelativistic
system has been developed. It is found that the exact quanti-
zation rule method is a powerful tool in finding the eigen-
values of all solvable quantum systems. In the present work,
the nonrelativistic quantization rule is extended to the rela-
tivistic quantum system without spin.

The exact quantization rule for nonrelativistic one-dimen-
sional quantum system has been found rather recently.' The
one-dimensional nonrelativistic Schrodinger equation for a
bound state is

B d
T ()T V(x) F(x) = E, ¥, (x) ©)
X
where m is the mass of the particle and is 7 the Planck
constant divided by 2n. n is the quantum number or a
number of node in wave function %(x).

Let p”(x)E,/(2m/h2)[En—V(x)] be the classical momentum

function for an energy E,, then the exact quantization rule is

J:l??n(x)dx = J':z %[En— V(x)ldx =nz+ y(E,)/h  (2)

or simply

| = Pm[E,—V(x)]dx = natfi+ »(E,) 3)

xl,n

with

_ 20 $u(X)  (dp,(x)
AE,) = i+ XI‘nd—an(x)/dx( i )dx. @)

X1, and x»,, are two classical turning points (x1, < x2,,), i.e.
V(xlj’l) = V(XZJI) =E,, and ¢n(x) = (d y/n(x)/dx)/ llyn(x) is the
log derivative of wave function ¥,(x). While in most of the
previous works 7i =2m =1 is assumed, they are kept in the
current work for completeness.

The correction term y(E,) depends on #, but for some
exactly solvable potentials (e.g. all the known translationally
shape invariant potentials) it is found to be independent of
ntie.

_ _ 20 W(X)P'y(X)
¥(E,) = NE,) 72'7’24‘71'[(]’0 700 dx . )

P'o(x) = dpo(x)/dx is the derivative of the momentum func-
tion for the ground state (n=0), and W(x) = —go(x) is the well
known superpotential. W'(x) = dW(x)/dx is the derivative of
superpotential.

The exact quantization rule (3) and (4) refers to exact
wave functions. To calculate the energy using the quantiza-
tion rule, exact wave functions should be predetermined so
that the usage of the exact quantization rule is, in practice,
very limited. Nonetheless for exactly solvable potentials, the
exact energies obtained from the quantization rule have been
reported.”!’ The quantization rule cannot be algebraically
derived from the Schrédinger equation but the Schrédinger
equation is utilized in the process of deducing the rule.>’ It
implies that there must be a certain relationship between the
quantization rule and the formality of the Schrédinger
equation.

The relativistic Klein-Gordon equation can be represented
as a nonrelativistic Schrodinger equation-like equation, i.e.
there is a formal similarity between the Klein-Gordon equa-
tion and the Schrédinger equation. Exploiting this similarity,
one may find an exact quantization rule for the Klein-Gordon
equation. In the following sections a new quantization rule
for the relativistic Klein-Gordon equation will be suggested
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and tested against some exactly solvable potentials.
Quantization Rule for the Klein-Gordon Equation

For a spinless particle of rest mass m, the one-dimensional
time-independent Klein-Gordon equation is

—hzczdiz @, (x)+ [mc* +S@)]° ¥ (x) = [E,~ V()T ¥(x)
X

(6)

where E, is the total relativistic energy of the particle for a
bound state » and c is the velocity of light. V(x) is called
Lorentz vector potential that is the time-component of the
(1+1)-vector potential. S(x) is called Lorentz scalar potential
that couples to the space-time scalar potential. The vector
potential couples to the energy while the scalar potential
couples to the mass of the particle. The two couplings are
independent and intrinsically different.

To understand relativistic effects in nuclear physics or
chemistry it is important to obtain bound state solutions of
the Klein-Gordon equation with mixed vector and scalar
potentials. For various types of potentials, such as linear,
exponential, Coulomb, Rosen-Morse, etc., the exact bound
state solutions of the one-dimensional Klein-Gordon equation
have been reported.!"?® It is also reported that the one-
dimensional Klein-Gordon equation can be exactly solved
for shape invariant potentials.**’

The relativistic Klein-Gordon Eq. (6) can be rewritten as a
Schrodinger-like equation,

nd
EryE L)+ Vo x) F,(x) = E gy, F(x) (7

with  V,,(x) = [S*(x)~ V(x)+2mc’S(x)+ 2E,V(x))/2mc”  and
Eotrm = (E%—mzcz)/2mc2 .

If one solves Eq. (7), the relativistic energy E, and the
relativistic wave functions %,(x) can be obtained. The effec-
tive potential or potential-like term V(x) is apparently
energy dependent so that the iterative method should be used
to solve Eq. (7). But, in all the previous works, the E, in
Vesr(x) is assumed to be constant, i.e. Vey(x) is defined for
each E,. This assumption turns out to be correct for exactly
solvable systems.?%%

Based on the formal similarity between Eq. (1) and Eq.
(7), we suggest a new quantization rule for the relativistic
Klein-Gordon Eq. (6) which is formally identical with the
exact quantization rule (3) and (4) for the nonrelativistic
Schrodinger equation, i.e.

[ "A2MIE =V () dx = n7hi+ y,p(Eo,) (8)

Xln

with  ylEpy,) = 2li+h Jz ¢n(x(;{a(; fin(x) e ©)

X1,» and x2,, are two turning points (x1,, < x2,,), 1.€. Veg(x1,4) =
V:zﬁ(xln) = Ee ne
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Defin(X) = /2m/h2[Eeﬁ;,,— V] is an analogy to the classical

momentum function p,(x). ¢.(x) is the log derivative of the
relativistic wave function ¥,(x). When V4(x) is a solvable
potential, y.;(Eess) 1s again independent of #, i.e.

Yot Boin) = Yo Eogro) = 7+ T Iﬁo&;emdx (10)
1,0 (x)
where W(x) = —go(x) is a superpotential term.

Now we choose some examples to test whether the
quantization rule for relativistic one-dimensional system is
adequate or not. Of course, the examples are relativistic
systems whose exact solutions of the Klein-Gordon equation
are already known, and the relativistic energy E, evaluated
using the quantization rule (8) and (9) (or (10)) will be
compared with the known solutions.

Applications

Needless to say, the general analytical solutions of the
Klein-Gordon equation with arbitrary S(x) and V(x) are not
known. Also there is a constraint for the Klein-Gordon
equation to have bound state solutions, i.e. when the scalar
potential energy (|S]) is larger than the vector potential
energy (|V]), the Klein-Gordon equation always has
analytical bound state solutions. We have found that the
general form of the scalar and vector potentials for which
exact solutions are known is

V(x) = Vof(x) and S(x) = Sof(x) (So>V,). (11)

Here S(x) and ¥(x) have the function f{x) in common (which
is a constraint). The Sy=V} case is so trivial that it is not of
interest. As mentioned before, the Sy < V, case does not
guarantee the existence of bound states. Please see Refs. 12
and 13 (and references therein) for the details of the Klein-
Gordon equation.

We will now evaluate the exact relativistic energies of the
Klein-Gordon Eq. (6) or (7), using the new quantization rule
(8) and (9) for three different choices of f(x).

The First Example. /(x)=x/2. In this case the Ver(x) and
Eepnin Eq. (7) are

JSE=VRIE+ (mE Sy + B, Vy)x

Vop(x) = > (12)
2mc
and
E2_m2ct
E , =-—"t— 1
effin 2mc? (13)

Letz=a 'x where
a="hc, (14)

then Eq. (7) can be rewritten as (the dummy variable z is
renamed back to x)
i d
—5—— )+ V(%) V(x) = E, , Ax) (15)
2mg? ’
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with
2

Vi) = 5=V (x)

:2” [ (3 V3)+ a(mcS, +E, Vo)x}

2
= 2h—m[A2x2+2ABx] (16)

and
2

S

El,n m eff,n

5
= —(E2-m3c%). 17)
2m
The constants 4 and B are
2 2
S-V3 S,t+E,V,
A2=—“(1 D) gnd g =S EnVy (18)
S5i7;

Since it is an exactly solvable system, the quantization rule

is, from Egs. (8) and (10),

j“/ [E,,—V\(x)]dx = nafi+ y, (19)
with

= h+ z"wdx and
Llﬂ w'(x)

D, o(x) = 71 [El o= V()] (20)

Now let us evaluate the left hand side (L.H.S.) and the
right hand side (R.H.S.) of Eq. (19) separately and equate
L.H.S. to R.H.S. to determine the energy. The L.H.S. is

LHS.= | 2 2mlE, ,—V,(x)]dx

xl,n

2
- 2’1/2;%[15, n—h—(A2x2+2ABx)}dx
Xin ’ 2}’}’!

=7 | “«/_ V- +2mE1 2

iy A4 74
”’7(3 +2mE, ) 1)
24\ T2

The integral formula I; in Appendix is used.

To evaluate the correction term 1, the superpotential #(x)
should be predetermined and it can be achieved by using the
supersymmetry algebra,*’ i.e.

Vi) = () = =)+ 22)

J2m
Recall that the effective potential Vi(x) in Eq. (16) is
formally identical with the harmonic oscillator potential.*’
There is no general way of solving Eq. (22). But using the

method for finding the superpotential of shape invariant
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potentials suggested by Cooper and Ginocchio,’' one may
obtain the superpotential #(x) and consequently the ground
state effective energy £ o. The results are

2
Wi(x) = %(AwB) and E, , = h—m(A—BZ). 23)

2m

Therefore, the derivative of effective momentum function
pl_,()(x) is

Pro)= 5. PRIEL o=

2 2
- di J@[i(A—BZ)—i(A2x2+2ABx)}
xnl 77 L2m 2m

_ —Ax-B (24)
B 2_2_B +A _B
A A2

and the correction term 7 is

7z'h+hJ' ZOM dx

1.0 W'(x)
i(Ax+B)
= a+h [ —Ax-B 4y
X0 —x2—2—3x+A_Bz
A/z 4 p
2
—Ax2—2Bx—% |
—7r7i+7i_[ dx==rh (25)
X1 0 » 2B A-RB? 2
X —=Xxt—
A 4>

The integral formulas 14, Is, and I¢ Appendix are used. The
same value of the correction term is reported in Ref. 32.
Therefore, R H.S. is

R.H.S.=n7ﬂi+%7ﬂi=(n+%)ﬂh. (26)
Since L.H.S. =R.H.S., Eq. (21) is equal to Eq. (26), i.e.
S R
—|B —E +=|7h. 27
2A h 1,n 7Tl ( )

After solving Eq. (27) for energy, one obtains
2
E,, =T [@n+1)4-B. (28)
T 2m

Now let us calculate the relativistic energy E,. From Egs.
(17) and (28),
—(E2 m’c ) [(2n+1)A -B ]. (29)

Inserting the constants 4 and B (Eq. (18)) and « (Eq. (14))
into Eq. (29), one obtains

20 2
E5=m2c4+(zn+1)7%' /Sg—Vg—[’”—c ‘Z‘; 2% . (30)
0— "0
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After solving the quadratic Eq. (30), the relativistic energy is

—0+,/JO’+4PR,

= = = -
E; = G1)
where
P=8
0=2mc’S,V,
R, =Tie(S)— wo)w(m%)—m%“wo . (32)

Here E} is the relativistic energy for a particle state » and

E;, for an antiparticle state n. These energies are exact as

found in Refs. 13, 22, 23, and 24.
The second example. f{(x)=—¢ . The Vy(x) and E.y in

Eq. (7) are
_(S5=Te > =2(mc2S,+E,Vy)e™
Volx) = e and
E2—m2ct
eff 2mc? (33)
which is formally equivalent to the Morse potential >’
Let a="c, (34)

then following the same substitution procedure discussed in
the previous example, Eq. (7) can be rewritten as

B d oy _
~ 2L Px)+V,(x) H(x) = E, ,¥(x) (35)
2m gy’ ’

where

2
Vi) = 2 {(S3= Ve 2 =2(meSy+ Ey Ve ]
m

2
= B 2B+ a2)e ] (36)
2m
and
B =L (B-met (37
2S,+E,
with 4 = M—Q‘ and B= [S3—V2 (38)

S;—V3
The L.H.S. of the quantization rule (19) is

LHS. = j " sz[El ,Z—---(B2 e ZB(A+OV2)e-ax)}dx

Xin

—Z0X ax 2 E n
_ h'Bj J_ 0r, AAF /) e 2Er ) 3
*ln B h B
Lety=e “,theny, ,=¢ " andy,,=e . Therefore,
LS. 7B yln%/ 2(A+a/2)y+2mE1 .
a y7 Y B

/ ”’El ”+A+a/2 (40)
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The integral formula I, in Appendix is used.

To evaluate the R.H.S. of the quantization rule (19), W(x)
is predetermined by using the same algebra discussed in the
previous example, i.e.

2
W(x) = ——(4—Be ™) and E, ,=—1-4>.  (41)
Pm ' 2m
Now p'io(x) is
Ay
P'l,o(x) =
2m
2 ?[El,O_Vl(x)]
—2ax — X
___aB[Be " —(A+a/2)e ] @2)
J-B*e ™ +2B(A+ a/2)e “— A1
and 7 is
X0 W(x)p] 0(x)
h+ —_— e 7
"= ] Lm 0o
- i !xm (A- Be"*") aB[Be "~ (A+aw/2)e ™] e
X1,0 J BZ Zax+ZB(A+w2)e—ax_A2
— fmdy —By+(Q2A+a/2)
a "o ) AZ
-y +E(A+a/2)y—E
A
+E _[y“‘ dy 7E(A+WZ)
a <y Yy 2
2 A
g eyt
_1
=3 (43)

where y=e “. The integral formulas s, Is, and I7 in
Appendix are used. The same value of correction term is
reported in Ref. 32. Therefore, R.H.S. is

R.H.S.=nﬂh+%ﬁh=(n+%)ﬂh. (44)

From the equality of L.H.S. = R.H.S,, i.e. Eq. (40) is equal
to Eq. (44),

”_h[_ _ZMEI’”+A+91 = (n+9ﬂh - (45)
o 72 2

Solving Eq. (45) for the energy, one obtains

2
2= -U-nay’). (46)

From Egs. (37) and (46), one obtains

E,
/s N N e 2
s—(E,-mc)=—[(d-na)] (47)
2m 2m
and the relativistic energy E, is found to be

5o 20ut /O3 APR,

" 2P

(48)
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where

P=5
0= —2hc(n+%) v, [T+ 2mcS,V,

R,= hzcz(nJr%)z(S%f V%)72hc(n+%)mczS0 /S5— V3+m204V§ .
(49)

These relativistic energies are exact as found in Refs. 11,
20, 23, and 24.

The third example. f(x)=tanhx. The Ver(x) and Ecp, in
Eq. (7) are

—(S2—V?3)sech2x+2(mc*S,+E, V,)tanh
V,4(x) = (S5—Vg)sech’x (”ic o HE,V,)tanhx (50)

2mc

and
E—mict—52
a—mc _S0+V(2)
2mc?

which is formally equivalent to the Rosen-Morse 11 poten-
tial.*
Similar variable change in the previous example gives the
Schrodinger-like equation of interest, i.e.
nd _
—5—— HUx)+Vi(x) Hx) = E, , Hx) (52)
2m g2 ’

where

Vi(x)= --—[ (S3—V3)sech?ax+2(mc?S,+ E,V,)tanh ax]

= -271—[—(Az+ ad)sech’ ax+2Btanhax] (53)
m
_7 22t
and E, ,==—(E?~m ¢ -S§+V}) (54)
T 2m
_ o 2_

with, 4 = —%4 ;4(50 /o) , B=mc’S,+E,V,,and a=Fic.
(55)

The superpotential and the ground state energy are

2 2

W(x) = L(Atanhax+§) and E, , = h—(—AZ—%) (56)
Pm A T 2m A

Then, the L.H.S. of the quantization rule (19) is

. 2
LHS. = [ sz[El n+2h—[(A2+ aA)sechzax—2Btanhax]}dx
X1n ’ m

:hA/AZ-*-aAIyz,” dy |2 28 om B
a  a? A+ oA h2A2+aA

”’Z{L/A +ad— 23——51 "—J—2B—2ﬂEl } (57)
"

where y = tanhax. The 1ntegra1 formula I3 in Appendix is
used.
Now p'10(x) is
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o[- (4’+ad)y-B](1-)")

J&?El,ﬁ@% ad)(1-y") 2By
7

Po(x) = (58)

The R.H.S. of the quantization rule (19) is

(Atanhaerg)p'l,O(x)

R.H.S. *nﬂh+7zh+hjx2" ———————T—————dx
.o Aasech” ax
(AJ/Jr )Pl o)
_(n+1)7m+h'[J’zo dy

Yo o(1-y7) Aa(1-y7)
B /—A2+aAy2— aB+24B - 82
2
2,0 ANA + aA A NA+ aAd
—(I’l+1)72’h+ '[)'IO 2 2, .2
1 J > 2B AP+BYA
— ,______y,—+l

Lrod A+ad

2

=(n+1)7zh—%[A+a—A/A(A+a)]. (59)

where y = tanhax. The integral formulas Ig, Iy, and ;o in
Appendix are used.
Equating Eq. (57) to Eq. (59), one obtains

”h[z P+ a 23—2—’”151 ) J 2B-2g, J
s
—(n+1)7r7i—— [A+a—JA(A+ )] . (60)
Solving Eq. (60) for the energy,
2 2
El,nzh—[—(A—na)Z—B—z] (61)
2m (A-na)

From Egs. (54) and (61), the relativistic energy E,, is

_—0+]Q'-4P,R,

'+
E; T )
where
1 2 5 2
P,= Z(—hc-f- e +4(853-V3)—2hcen) +V,
0=2mc’S,V,

R = 1 5 22 > 4 244
"_E(_ ct Jh e +4(S§-VG)—2hen) +m e S
2
—J—‘(—hc+ [+ 4(S2-V3)~2hen)y (m*c*+82-13) . (63)

These energies are exact as found in Refs. 14, 15, and 23.

For the three exactly solvable examples presented above,
the quantization rule (8) and (10) for the Klein-Gordon
equation is found to be exact. As a matter of fact the
quantization rule (8) and (9) should be exact for any other
potential in general.

Conclusion

A quantization rule for relativistic system cannot be
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algebraically derived from the Klein-Gordon equation.
However, by exploiting the formal similarity between the
nonrelativistic Schrédinger equation and the relativistic
Klein-Gordon equation, a quantization rule for relativistic
system is successfully obtained. The exact quantization rule
for one-dimensional spinless relativistic quantum systems,
in compact form, is

Y2n ¢ (x)p n(x)dx

64
. (¢4

I pn(x)dx (n+1)7r+J

where p”(x)——JE2 2F V(x)+V (x)— -5 (x)— 2me” S(x)— m’¢* and
4,(x) = (d P, (x)/dx)/ P, (x) . X1,, and X2, are two turning points
(1., < x2,). S(x) is a scalar potential and V(x) is a vector
potential. For exactly solvable systems, it is found that

[ g oo BPED gy (65)

o Pha(X) o Plo(x)

The relativistic quantization rule seems to have no practi-
cal usages but its form may suggest the deeper understand-
ing on relativistic quantum systems. In the current work,
since the nonrelativistic Schrodinger equation is bosonic in
nature, the relativistic bosonic particle Klein-Gordon equa-
tion is selected instead of the relativistic Dirac equation for
fermions. It will be interesting to see if any quantization can
be easily formulated for the relativistic Dirac equation.

Though the current formal derivation seems to be trivial,
this type of formal analysis may help one understand other
quantization conditions. For example, the well-known super-
symmetric WKB quantization is found to be exact for all
translationally shape invariant potentials. This mystery has
never been algebraically proved even though there were
many attempts. We are performing a formal analysis on
supersymmetric WKB quantization and the results will be
reported in the near future.

Appendix

The following integral formulas are used in the current
calculation. The formulas I; through I; are found in the
literatures®*>* and the last three formulas Is, lo, and Iy are
algebraically derived by us.

= [ o-a) -3 = Zb-a)’ (a<b)
1= '[bayl}A/(yfa)(bfy) =Z(a+b)-mab (0<a<b)

1= fjl—”’%«yfa)(bfy) =2 J=a)(1-b)-/T ) (17 5)]
-y

(-l<a<b<l)

Hosung Sun
- [— - (a<b)
“WNOo-a)(b-y)
e [ A /PR b
) a6 Za+b) (a<b)
o= =LY My 3Ty T (a<b)
“Jo-a)b-y) 8 2
L= dy = z (a<b,c#0)
“(cy+d)y—a)(b-y) J(d+ca)(d+cb)
Is‘j dy 1 }
(1) JOo—a)(b—y) 2 J(1+a)(1+b) J(-a)(1-b)
(—l<a<b<l)
L’__[ ydy 1 }
(1) JOo—a)(b—y) 2 J(1+a)(1+b) J(l —a)(1-b)
(—l<a<b<l)

L= Lh

ydy ﬂ[ + 1 }
A=) Jo-a)b-y) 2 (1+a)(1+b) (1-a)(1-b)

(-l<a<b<l)
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