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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A
SCHRODINGER-TYPE SINGULAR FALLING ZERO
PROBLEM

EunkyunGg Ko*

ABSTRACT. Extending [14], we establish the existence of multiple positive
solutions for a Schrédinger-type singular elliptic equation:
{ “Aut V(@ = AW zeq

u = 0, z € 09,
where 0 € Q is a bounded domain in RN, N > 1, with a smooth boundary
oQ, B €[0,1), f € C[0,00), V : Q@ — R is a bounded function and X is a
positive parameter. In particular, when f(s) > 0 on [0,0) and f(s) < 0
for s > o, we establish the existence of at least three positive solutions for
a certain range of A by using the method of sub and supersolutions.

1. Introduction

We consider a Schrédinger- type singluar problem on RY

—Au+V(x)u = )\%, x €Q,
(Px)
u = 0, x € 09,
where 0 € € is a bounded domain in RN, N > 1,0< 8 < 1, V € L*(Q) and A
is a positive parameter. We assume that f : [0,00) — R is a continuous function
satisfying
(H1) There exists o > 0 such that f(s) > 0 for all 0 < s < ¢ and f(s) <0
for all s > 0.
We further assume that V' € L*°(Q) satisfies the condition:

(H2) There exists a constant ¢y > 0 such that V(z) > —cy for z € Q
and 1 — cyc; > 0, where ¢; > 0 is a constant such that fQ |u|2dx <
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c1 Jo, |Vul?dz Yu € Wy *(Q).

The first equation in (Py) is derived from the nonlinear Schrédinger equation
(details in [21]). Nonlinear Schrédinger equations have been studied widely to
demonstrate the existence of solutions which act on V in the whole space RV
(see [2], [13], [19]) or on bounded domains (see [10]). In the case when V = 0,
the existence of multiple positive solutions of (Py) with falling zero nonlinearity
has been widely investigated for a long time (see [3],[4], [5], [18] and [22] and
references therein). In this paper, when V € L*(Q) satisfies (H2), by using
the method of sub and supersolutions, we establish the existence of a positive
solution of (Py) for all A > 0 and the existence of multiple positive solutions of
(Py) for a certain range of A.

We first state the existence result:

Theorem 1.1. Assume (H1) and (H2). Then (P\) has a positive solution
uy € C2(Q)NC(Q) for all A > 0.
Next, to state the multiplicity result, we let
N N+1 2
WA+ B
NN AN + |V oo R

where R is the radius of the largest inscribed ball Bg in Q. We define f*(s) :=
maxyco,s) f(t) and for any 0 < a < d < b,

A=

aftt 1
Q(a,d,b) = fld) B .
min{ abtl 248 b}
fr(a)llw]|&t F()AB

Theorem 1.2. Assume (H1) and (H2). If there exist a,b and d with 0 < a <
d < b such that Q(a,d,b) <1,

= s d
=13~ 55

B||V]|eos > 0, Vs € [0, 0]

and f(s) is nondecreasing on [a,b], then the problem (Py) has at least three
positive solutions uy € C%(Q) N C(Q) for all A, < X\ < X*, where

B+1 1 B+1 2d8
)\*:d and/\*:min{ a d b}.

fr@lwlst S(dAB

In order to obtain at least three positive solutions for a certain range of A
using the method of sub and supersolution, it is important to construct two
pairs of sub and supersolutions (¢, Z1), (12, Z2) of (Px) with the property that
P <o < Z1, 1 < Zy < Z; such that ¢ £ Z5 so that three solution results
in [1] can be applied. However, the term V (z) acting on u gives a nontrivial dif-
ficulty in the construction of the second pair of sub and supersolution (3, Z2)
satisfying 19 £ Z5. We overcome the difficulty from the singularity by the ar-
guments used in [15] and [22] and by combining V (x)u and % with a suitable
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FIGURE 1. S-shaped bifurcation diagram showing the existence
of multiple positive solutions for (P})

way, that is f(s) = fs(;;) - fﬁ@l B||V||oo$, we enable to construct the second pair
of sub and supersolution (wg, Z5) satisfying 1o £ Zs.

This paper is organized as follows: In Section 2, we analyze the phospho-
rous cycling model which is applicable to our results. Moreover, we provide
S-shaped bifurcation curves verifying Theorem 1.1 and Theorem 1.2 obtained
numerically via Quadrature method. In Section 3, we recall a method of sub
and supersolutions for (Py) and a three solution theorem for singular problem
(Py). Section 4 is devoted to the proofs of Theorem 1.1 and Theorem 1.2.

2. Example and numerical results

In this section, we introduce a model which is applicable in our main results.
A simple model reads as

{ —Au+V(z)u

m‘y

(T—u—f—H 4>7 r €,

1
, x € 0f. M)

S g

u =

This model describes phosphorous cycling in stratified lake and the colonization
of barren soils in drylands by vegetation. In particular, it illustrates the decrease
in the amount of phosphorous in the eqilimnion (upper layer ) and the rapid
recycling that occurs when the hypolimnion (lower layer) is depleted of oxygen.
It also describes the colonization of barren soils in drylands by vegetation (more
details in [5] and [6]).

Denote g(s) := f( ) for s > 0. Let 0 < B < 1 be arbitrary fixed. Now we
provide the necessary conditions for the value of 7 > 0 and ¢ > 0 in order to
obtain the existence and multiplicity result Theorem 1.1 and Theorem 1.2.

Proposition 2.1. Ifc > = ﬂ)QTJr (4(15)62) a/d= /3 :¢(1) for each T > 0, then

there exist 0 < m < M < oo such that g'(m ):g(M)zo
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Proof. As ¢'(s) = & {fs(lf)} = %, we evaluate

ds
/ des’ Bes!
S = BI) = st TS
4 4— 8 —
e ISP CRE
where j(s) := % and i(s) := 78+ (1 — B)s for s > 0. We claim

that for each 7 > 0 if ¢ > ¢(7), then j(s) —i(s) = 0 has two positive so-
lutions. This implies that ¢'(s) has exactly two zeros in (0,00). Indeed, as

i'(s) = %, it follows that j(s) achieves exactly one local maxi-

mumwats—44 n (0,00). Hence, if j 18 > i (@48 , then
16 175 1 73 4+

the linear line i(s) will cut ](5) at exactly two dlﬂerent points on (0,00). This

implies that there exist exactly two positive critical points 0 < m < ¢ i +§ <
16(1— 4—
M < oo such that ¢'(m) =¢' (M) =0if ¢ > (4 )27'—1— (4(_&[32) Y ﬁ. O

5
Proposition 2.2. If 7 > %(‘/g — i ({‘/g) =: 79, then there exists a unique
o > 0 such that g(o) = 0.

Proof. Since g has the local minimum at s = m, we can see that if g(m) > 0,
then g has a unique zero in (0,00). Now it is enough to show f(m) > 0 as
g(m) = 7(:;) Note that m is the solution of j(s) = i(s) at the previous lemma.

Hence, m satisfies

em* T8+ (1-pB)m
(14+m42  4-8—pmt "’
Hence, using (2), we evaluate

! B+(1-pm)(+m!
f(m):T—m+1imm4=T—m+(T A(L—/jzn;)n(@‘l m)7

(2)

which is simplified by
47 +m® —3m

Fm) = 45—t
Now we note 4 — 8 — Bm* > 0 as 0 < m?* < jjr—ﬂ Hence, f(m) > 0if 7 >
1
i(?)m —m?®). Observing that  sup Z(?)m —m?) is achieved at m = </§ and
0,452

5
noting (‘/§< {*/%aSO<B<l,weobtainf(m)>01f7'>%4 %—i(“ %) .
O

This implies that g has an unique zero o > 0 if 7 > 7.

Hence, for all 7 > 79 and ¢ > (41 2T+ (4(1 )5) 1 j—w»

satisfies the condition (H1) and the graph of g is given in Figure 2.

the function g(s) =
f(
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m
FIGURE 2. Graph of g satisfies (H1) for ¢ > ¢(7) and 7 > 7.

Now we provide the bifurcation curves of models (1) obtained numerically
via Quadrature method when 7 and c are satisfied with Proposition 2.1 and
Proposition 2.2 and V' (z) is a constant with ||V||ec =~ 0. Consider the following
the one dimensional problem of (1) taking V(x) as a constant u € R

—u +pu = )\%, z € (0,1), 3)
u(@0) =0 = wu(l),

where f(u) =7 —u+ 1?:4. It is well-known that if u is a positive solution of
(3), then u is symmetric about # = 3, u is increasing on (0, §
on (3,1) and |Julo = u(3). By integrating (3) over (0, 1
propeties, we deduce

, 5) and decreasing
) and using the above

i:/p ds
V2 Jo /AIF(p) = F(s)] = 5(p* — s?)

where F(u) = [ fs([;)ds and p = |Jullec. Conversely, by the modification of
Quadrature method in [3], it can be shown that if for each p > 0 there exists
A > 0 satisfying (4), then (3) has a positive solution uy with |lul|« = p. Here
we provide the S-shaped bifurcation curve for (3) with the specific value of 7

and c satisfying the above lemma and the various values of y in Figure 3.

= Glp, AL, (4)

3. Preliminary

In this section, we recall a method of obtaining sub and supersolutions and a
three solution theorem for the singular problem (Py). We also recall results on
the principal eigenvalue and eigenfunction of an eigenvalue problem. Finally,
we prove that the singular problem (8) has a positive solution.

3.1. Method of sub- and supersolutions
A subsolution of (Py) is defined as a function ¢ : Q — R satisfying
—AY + V() <A 2 eq,

P >0, T €, (5)
P =0, x € 01,
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FIGURE 3. S-shaped bifurcation Diagram of (3) for the value
of 7 =10 and ¢ = 100 via Mathematica

while a supersolution of (Py)is defined as a function Z : Q — R satisfying
~AZ+V()Z > 2 req,
Z >0, x €N, (6)
Z =0, x € 0N.

The following Lemmas hold.

Lemma 3.1. ([8]) If a subsolution v and a supersolution Z of (Py) exist such
that ) < Z on Q, then (Py) has at least one solutionu € C*(Q)NC(Q) satisfying
Y <u<Z onf

Lemma 3.2. ([9]) Suppose there exist two pairs of ordered sub-supersolutions
(1, 721) and (o, Zs) of (Px) with the property that v < o < Zy, ¥ <
Zoy < Z1 and o £ Zs. Additionally, assume that 1o and Zs are not solutions
of (Py). Then there exist at least three solutions u;,i = 1,2,3 for (Px)where
uy € [Y1, Za],ug € 2, Z1] and uz € (Y1, Z1] \ ([¥1, Z2] U [12, Z1]).

3.2. An eigenvalue problem

Let A1 be the principal eigenvalue and ¢; be a corresponding eigenfunction
of
—Ap+V(x)p=Np, z€Q, (7)
¢ =0, x € 01,
If V € L*(9), then we can choose ¢; € C%(Q) N C(Q) such that ¢; > 0 in Q.
(See [7],[11] and [20]).
3.3. A singular problem
Lemma 3.3. (see [17]) Assume (H2). Then, the following singular problem

{Aw +V(z)w= L5, inQ,

8
w =0, on 0. ®
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has a solution w € C?(2) N C(Q) such that w(zx) >0 for x € Q and %; <0 on
00 where n is the outward unit normal to OS).

Proof. Tt has been proved in [17]. For the reader’s convenience, we recall it.

First, we consider an energy functional on VVO1 2(Q) corresponding to (8) given
by

1 1 1
= 7/ |Vw\2dx - 7/(w+)1*ﬁd:c+ 7/ V(:E)w2dx, w € WOIQ(Q)
2 Jo 1-8Ja 2 Jo
Since this functional satisfies
1 1
E(w) = 7/ |Vw|?dz — / W Pde + = | V(z)w?de,
1-8 2 Jo
1
> *vallz 7|| 137" 7||U}||§

1 1
30— even)[Vul} - 1= ul} ™
and since 0 < 1 — 8 < 1, F(w) is coercive and weakly lower semicontinuous on
W,y 2(). It follows that E possesses a global minimizer w € W, * (). Moreover,
note that w # 0 in Q since E(0) =0 > E(e¢1) for small enough € > 0.

Next we consider the polar decomposition w = wt — w™ for w € W, *(Q)
which yields Vw = Vwt — Vw™. Hence, if w is a global minimizer of E, then
|w] is also global minimizer of F, which implies that F(|w|) < E(w). Since w
is a global minimizer of E, E(|w|) = E(w) holds if and only if w > 0 a.e. in Q.
Then, any global minimizer of E must satisfy w > 0 a.e. in 2.

Further, we recall that by the standard elliptic regularity theory a global
minimizer w € Wy*() of E belongs to C2(Q) N C(Q) (see [12]).

Now, we will show that

8
w(x) > e(z)|ello"" in
where e is the solution of :

—Ae+ [[V]we=1, €,
e =0, x € 0.

~ -
Suppose Q :={z € Q: w(z) < e(z)|le]l<' "} # 0. Then we obtain that

B B B
—A(w —elleflo") = =V(@)w + ||[V][celle]loc"" + % — [leffoc™*”
__B_ 1 __B_
= (IVllo = V(@)w + [Vllo(ellelloo™ —w) + —5 = llello™
> 1 e
> =~ llell=
L __B_
> e(x)Pllel| &7 = lleflo"”
__B_
> [lellL e IIW lefloc’™” =0

3
B
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- _ B . _ 8 -
in Q and w — ellef]|oc' ™ = 0 on I, which implies that w — ele]|s' ™ > 0 in Q2
by the Maximum principle. This contradicts to the definition of 2. Hence, we

__B_
have w(z) > e(z)|le]|' " on Q. Since e > 0 in Q2 and g—; < 0 on 99, it follows
thatw(a:)>0forx€(2and%—t’;<00n8§2. O

4. Proof of the Main Theorems

4.1. Proof of Theorem 1.1

Proof. First, we construct a positive supersolution Z; for all A > 0. Define
f*(s) = max,eo,s f(t). Then, clearly f(s) < f*(s) and f*(s) is nondecreasing
for all s € [0,00). Then there exists My > 1 such that for each A >0

My~ = A (Ma[wllso)- (9)
Let Zy = Myw. Then, by using (9) and the definition of f*, we have
M)
—AZ1+ V()21 = —%
1+ V(x)Z: P

Mfwﬁ M)\w)ﬁ - (M)\w)ﬁ o Zlﬁ

in 2 and Z; = 0 on 0f2, which implies that Z; is a supersolution of (Py) for all
A> 0.
Next, we construct a positive subsolution v, satisfying v, < Z; for all A.

Since lim,,_,o+ % = 00, there exists a sufficiently small my > 0 such that
f(mag1)
A < A———.
1magr < (xdn)?

Let 91 := mx¢1. Then we obtain

fmady) _\ f(i)

(mag1)? W)

in Q and ¥ = 0 on 992. Hence, 1 is a positive subsolution of (P) for all A > 0.
Now, it is possible to choose my > 0 small enough so that ¢ (z) < Z1(z) since
¥(z) > 0 and Z;(z) > 0 in Q and 8{9an < 0 on 99Q. Therefore, by Lemma 3.1,
there exists a solution uy such that ¢ < wuy < Z; for all A > 0. O

—Atpy +V(z)1 = Aimagr < A

4.2. Proof of Theorem 1.2
B+1

Proof. We first construct a positive supersolution of (Py) for A < W

Let Z5 = a—%—. Then it follows

lwlleo
a
_AZQ + V(.T)ZQ W
s oS SeRi) SeRE) ) f(2)

(ar=2—)8 =" (ar=2—)8 = (ar%—)F Z§

llwlloo llwlloo
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QB+
fr@w| &

supersolution of (Py) for A <

in Q when A < Clearly, Z = 0 on 0. Hence, Z5 is a positive
o8+

T @)l B )

Now we construct a positive subsolution ¥ of the following problem

{—Au + | V]| oou = )\%, in Q.

(10)
u =0, on 99,

Then, 15 is a positive subsolution of (Py) since
f(2)

vy

—Atpy + V()2 < —Athg + ||V [[ooth2 < A
We recall f(u) % - %BHVHOOU. Note that f(u) is nondecreasing on [a, b].

Let a* € (0,a] be such that f(a*) = ming<,<q f(z) and define a nonsingular
function h € C([0,0)) such that

so that & is nondecreasing on (0, a] and h(u) < f(u) for all u > 0.

a a b N
FIGURE 4. Graph of h

Now we consider the following nonsingular problem:
—Au=M(u) in
(11)
u=20 on 0.

For 0 < e < R and §, ;& > 1 let us define p : [0, R] — [0, 1] by

(r) 1, 0 <r <g
T)=
r 1—(1— (B=)m) e < <R,

R—e
Then we find
) — {0, 0<r<e
— 2 (1 (Femym (Bt e < r < R,
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Let v(r) = dp(r). Notice that |[v'(r)] < d%. Define 9 as the radially symmetric
solution of

—Av = Ah(v(|z])), in Br(0),
¥ =0, on dBR(0).

Then ¢ satisfies

{—<7~N-1<w'<r>>>' = 2N (o (r)), 12
¢'(0) =0, P(R) =0
Integrating the first equation of (12) for 0 < r < R, we have
—'(r) = r;\*l /0’“ sNTh(v(s)) ds. (13)
Here we claim that
U(r) >o(r), VO<r <R (14)
and
[¥lloc < b (15)
df+t 1 248
when mg <AL Wb. In order to prove (14), it is enough to show that
—'(r) > = (r)Vo<r<R (16)

as Y(R) = 0 = v(R). Notice that for 0 < r <, ¢'(r) < 0 = v'(r). Hence, for
r > ¢ we obtain from (13)

) = TNAA /OTSN_lh(v(s)) ds

> Rjéfl/ sV 1h(v(s)) ds
0

A €N AN
RN-T N (d)zwﬁf(d)

IftA> Td) (JI\QRE)EN Op, then we can show (16) as |v'(r)| < d%. Note that
. d NRN-! _d (N+ 1N
) R T fa) men
and is achieved at € = ]flv—ﬁ Hence, if A > f(dd) %, then in the definition of

- and the values of 6 and i so that A > +4- S oy,

d (N+DN+ gftt g
f(d) BPNNTTTf(d) B

f(d)
&P

p we can choose € = N+

Thus, we obtain (16) when A\ >

observing that

fd)=(1-B|V|x) (17)
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Next, integrating (13) from ¢ to R, we obtain

o) = /thI\;\1</OrsN_lh(v(s)) ds) dr

< /tR TN%h(d) (/OrsN—l ds> dr

b 2N 2d°
Hence, if A < —— = ————b (using (17) again), then it follows ||%||cc < b.

f(d) RB* ~ f(d)AB

Finally, we have
o(r) <Y(r)<bvVOo<r<R

d 1 2d°
when ——— < A < ———=0b. Now, from the fact v(r) < ¢¥(r) <b,V0O<r <R
F@B <~ Fd)AD )=o)

and h is nondecreasing on [0, b], we can see
—Av) = Ah(v) < Ah(v), in Bg(0) and ¢ = 0 on dBg(0).

Let us define {(z) = ¢(x) if z € Bg(0) and {(z) = 0 if x € 2\ Br(0). Then,
¢ is a nonnegative subsolution of (11) for %% <AL %. However, ¢ is
not strictly positive in 2. We iterate this subsolution £ in a suitable manner,
we obtain a positive subsolution s of (11) such that ¥s > 0 in Q (see details
n [15]).

Finally, since A > %%, we obtain

—Aty < Ah(1hg) <

I ||V||oo¢2>

(1 )
V5

A ; 2) Vo

which implies that 1) is a positive subsolution of (10).

In the proof of Theorem 1.1 we have a sufficiently small subsolution 1 =
mx¢1 such that ¥, < Z5 and a sufficiently large supersolution Z; = M)w such
that o < Z;. Hence, there exist a positive solutions u; and wus of (Py) such
that ¢ < w; < Z5 and ¥y < ug < Z;. Note that u; # ug since ¥ L Zs.
Therefore by Lemma 3.2, there exists a positive solution ug such that ug €

[V1, Z1] \ ([¥h1, Z2] U [3ha, Z1]). 0
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