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EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A

SCHRÖDINGER-TYPE SINGULAR FALLING ZERO

PROBLEM

Eunkyung Ko∗

Abstract. Extending [14], we establish the existence of multiple positive

solutions for a Schrödinger-type singular elliptic equation:{
−∆u+ V (x)u = λ

f(u)

uβ , x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 0 ∈ Ω is a bounded domain in RN , N ≥ 1, with a smooth boundary
∂Ω, β ∈ [0, 1), f ∈ C[0,∞), V : Ω → R is a bounded function and λ is a

positive parameter. In particular, when f(s) > 0 on [0, σ) and f(s) < 0

for s > σ, we establish the existence of at least three positive solutions for
a certain range of λ by using the method of sub and supersolutions.

1. Introduction

We consider a Schrödinger- type singluar problem on RN

(Pλ)

 −∆u+ V (x)u = λ f(u)
uβ , x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 0 ∈ Ω is a bounded domain in RN , N ≥ 1, 0 ≤ β < 1, V ∈ L∞(Ω) and λ
is a positive parameter. We assume that f : [0,∞) → R is a continuous function
satisfying

(H1) There exists σ > 0 such that f(s) > 0 for all 0 ≤ s < σ and f(s) < 0
for all s > σ.

We further assume that V ∈ L∞(Ω) satisfies the condition:

(H2) There exists a constant cV > 0 such that V (x) ≥ −cV for x ∈ Ω
and 1 − cV c1 > 0, where c1 > 0 is a constant such that

∫
Ω
|u|2dx ≤
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c1
∫
Ω
|∇u|2dx ∀u ∈W 1,2

0 (Ω).

The first equation in (Pλ) is derived from the nonlinear Schrödinger equation
(details in [21]). Nonlinear Schrödinger equations have been studied widely to
demonstrate the existence of solutions which act on V in the whole space RN
(see [2], [13], [19]) or on bounded domains (see [10]). In the case when V ≡ 0,
the existence of multiple positive solutions of (Pλ) with falling zero nonlinearity
has been widely investigated for a long time (see [3],[4], [5], [18] and [22] and
references therein). In this paper, when V ∈ L∞(Ω) satisfies (H2), by using
the method of sub and supersolutions, we establish the existence of a positive
solution of (Pλ) for all λ > 0 and the existence of multiple positive solutions of
(Pλ) for a certain range of λ.

We first state the existence result:

Theorem 1.1. Assume (H1) and (H2). Then (Pλ) has a positive solution
uλ ∈ C2(Ω) ∩ C(Ω̄) for all λ > 0.

Next, to state the multiplicity result, we let

A =
(N + 1)N+1

NN
and B =

R2

AN + ∥V ∥∞R2
,

where R is the radius of the largest inscribed ball BR in Ω. We define f∗(s) :=
maxt∈[0,s] f(t) and for any 0 < a < d < b,

Q(a, d, b) :=

dβ+1

f(d)
1
B

min
{

aβ+1

f∗(a)∥w∥β+1
∞

, 2dβ

f(d)AB b
} .

Theorem 1.2. Assume (H1) and (H2). If there exist a, b and d with 0 < a <
d < b such that Q(a, d, b) < 1,

f̃(s) :=
f(s)

sβ
− f(d)

dβ+1
B∥V ∥∞s > 0, ∀s ∈ [0, b]

and f̃(s) is nondecreasing on [a, b], then the problem (Pλ) has at least three
positive solutions uλ ∈ C2(Ω) ∩ C(Ω̄) for all λ∗ < λ < λ∗, where

λ∗ =
dβ+1

f(d)

1

B
and λ∗ = min

{
aβ+1

f∗(a)∥w∥β+1
∞

,
2dβ

f(d)AB
b

}
.

In order to obtain at least three positive solutions for a certain range of λ
using the method of sub and supersolution, it is important to construct two
pairs of sub and supersolutions (ψ1, Z1), (ψ2, Z2) of (Pλ) with the property that
ψ1 ≤ ψ2 ≤ Z1, ψ1 ≤ Z2 ≤ Z1 such that ψ2 ̸≤ Z2 so that three solution results
in [1] can be applied. However, the term V (x) acting on u gives a nontrivial dif-
ficulty in the construction of the second pair of sub and supersolution (ψ2, Z2)
satisfying ψ2 ̸≤ Z2. We overcome the difficulty from the singularity by the ar-

guments used in [15] and [22] and by combining V (x)u and f(u)
uβ with a suitable
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Figure 1. S-shaped bifurcation diagram showing the existence
of multiple positive solutions for (Pλ)

way, that is f̃(s) = f(s)
sβ

− f(d)
dβ+1B∥V ∥∞s, we enable to construct the second pair

of sub and supersolution (ψ2, Z2) satisfying ψ2 ̸≤ Z2.

This paper is organized as follows: In Section 2, we analyze the phospho-
rous cycling model which is applicable to our results. Moreover, we provide
S-shaped bifurcation curves verifying Theorem 1.1 and Theorem 1.2 obtained
numerically via Quadrature method. In Section 3, we recall a method of sub
and supersolutions for (Pλ) and a three solution theorem for singular problem
(Pλ). Section 4 is devoted to the proofs of Theorem 1.1 and Theorem 1.2.

2. Example and numerical results

In this section, we introduce a model which is applicable in our main results.
A simple model reads as{

−∆u+ V (x)u = λ
uβ

(
τ − u+ cu4

1+u4

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1)

This model describes phosphorous cycling in stratified lake and the colonization
of barren soils in drylands by vegetation. In particular, it illustrates the decrease
in the amount of phosphorous in the eqilimnion (upper layer ) and the rapid
recycling that occurs when the hypolimnion (lower layer) is depleted of oxygen.
It also describes the colonization of barren soils in drylands by vegetation (more
details in [5] and [6]).

Denote g(s) := f(s)
sβ

for s > 0. Let 0 < β < 1 be arbitrary fixed. Now we
provide the necessary conditions for the value of τ > 0 and c > 0 in order to
obtain the existence and multiplicity result Theorem 1.1 and Theorem 1.2.

Proposition 2.1. If c > 16β
(4−β)2 τ +

16(1−β)
(4−β)2

4

√
4−β
4+β =: c(τ) for each τ > 0, then

there exist 0 < m < M <∞ such that g′(m) = g′(M) = 0.
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Proof. As g′(s) = d
ds

[
f(s)
sβ

]
= sf ′(s)−βf(s)

sβ+1 , we evaluate

sf ′(s)− βf(s) = −s+ 4cs4

(1 + s4)2
− τβ + βs− βcs4

1 + s4

=
cs4(4− β − βs4)

(1 + s4)2
− τβ − (1− β)s =: j(s)− i(s)

where j(s) := cs4(4−β−βs4)
(1+s4)2 and i(s) := τβ + (1 − β)s for s > 0. We claim

that for each τ > 0 if c > c(τ), then j(s) − i(s) = 0 has two positive so-
lutions. This implies that g′(s) has exactly two zeros in (0,∞). Indeed, as

j′(s) = 4cs3(4−β−(4+β)s4)
(1+s4)3 , it follows that j(s) achieves exactly one local maxi-

mum c(4−β)2
16 at s = 4

√
4−β
4+β in (0,∞). Hence, if j

(
4

√
4−β
4+β

)
> i

(
4

√
4−β
4+β

)
, then

the linear line i(s) will cut j(s) at exactly two different points on (0,∞). This

implies that there exist exactly two positive critical points 0 < m < 4

√
4−β
4+β <

M <∞ such that g′(m) = g′(M) = 0 if c > 16β
(4−β)2 τ +

16(1−β)
(4−β)2

4

√
4−β
4+β . □

Proposition 2.2. If τ > 3
4

4

√
3
5 − 1

4

(
4

√
3
5

)5
=: τ0, then there exists a unique

σ > 0 such that g(σ) = 0.

Proof. Since g has the local minimum at s = m, we can see that if g(m) > 0,
then g has a unique zero in (0,∞). Now it is enough to show f(m) > 0 as

g(m) = f(m)
mβ . Note that m is the solution of j(s) = i(s) at the previous lemma.

Hence, m satisfies
cm4

(1 +m4)2
=
τβ + (1− β)m

4− β − βm4
. (2)

Hence, using (2), we evaluate

f(m) = τ −m+
cm4

1 +m4
= τ −m+

(τβ + (1− β)m)(1 +m4)

4− β − βm4
,

which is simplified by

f(m) =
4τ +m5 − 3m

4− β − βm4
.

Now we note 4 − β − βm4 > 0 as 0 < m4 < 4−β
4+β . Hence, f(m) > 0 if τ >

1
4 (3m−m5). Observing that sup

(0, 4
√

4−β
4+β )

1

4
(3m−m5) is achieved at m = 4

√
3
5 and

noting 4

√
3
5 <

4

√
4−β
4+β as 0 < β < 1, we obtain f(m) > 0 if τ > 3

4
4

√
3
5−

1
4

(
4

√
3
5

)5
.

This implies that g has an unique zero σ > 0 if τ > τ0. □

Hence, for all τ > τ0 and c > 16β
(4−β)2 τ + 16(1−β)

(4−β)2
4

√
4−β
4+β , the function g(s) =

f(s)
sβ

satisfies the condition (H1) and the graph of g is given in Figure 2.
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Figure 2. Graph of g satisfies (H1) for c > c(τ) and τ > τ0.

Now we provide the bifurcation curves of models (1) obtained numerically
via Quadrature method when τ and c are satisfied with Proposition 2.1 and
Proposition 2.2 and V (x) is a constant with ∥V ∥∞ ≈ 0. Consider the following
the one dimensional problem of (1) taking V (x) as a constant µ ∈ R{

−u′′ + µu = λ f(u)
uβ , x ∈ (0, 1),

u(0) = 0 = u(1),
(3)

where f(u) = τ − u + cu4

1+u4 . It is well-known that if u is a positive solution of

(3), then u is symmetric about x = 1
2 , u is increasing on (0, 12 ) and decreasing

on ( 12 , 1) and ∥u∥∞ = u( 12 ). By integrating (3) over (0, 12 ) and using the above
propeties, we deduce

1√
2
=

∫ ρ

0

ds√
λ[F (ρ)− F (s)]− µ

2 (ρ
2 − s2)

:= G[ρ, λ], (4)

where F (u) =
∫ u
0
f(s)
sβ
ds and ρ = ∥u∥∞. Conversely, by the modification of

Quadrature method in [3], it can be shown that if for each ρ > 0 there exists
λ > 0 satisfying (4), then (3) has a positive solution uλ with ∥u∥∞ = ρ. Here
we provide the S-shaped bifurcation curve for (3) with the specific value of τ
and c satisfying the above lemma and the various values of µ in Figure 3.

3. Preliminary

In this section, we recall a method of obtaining sub and supersolutions and a
three solution theorem for the singular problem (Pλ). We also recall results on
the principal eigenvalue and eigenfunction of an eigenvalue problem. Finally,
we prove that the singular problem (8) has a positive solution.

3.1. Method of sub- and supersolutions

A subsolution of (Pλ) is defined as a function ψ : Ω̄ → R satisfying −∆ψ + V (x)ψ ≤ λ f(ψ)
ψβ , x ∈ Ω,

ψ > 0, x ∈ Ω,
ψ = 0, x ∈ ∂Ω,

(5)
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µ = 1 µ = −1

Figure 3. S-shaped bifurcation Diagram of (3) for the value
of τ = 10 and c = 100 via Mathematica

while a supersolution of (Pλ)is defined as a function Z : Ω̄ → R satisfying −∆Z + V (x)Z ≥ λ f(Z)
Zβ , x ∈ Ω,

Z > 0, x ∈ Ω,
Z = 0, x ∈ ∂Ω.

(6)

The following Lemmas hold.

Lemma 3.1. ([8]) If a subsolution ψ and a supersolution Z of (Pλ) exist such
that ψ ≤ Z on Ω̄, then (Pλ) has at least one solution u ∈ C2(Ω)∩C(Ω̄) satisfying
ψ ≤ u ≤ Z on Ω̄.

Lemma 3.2. ([9]) Suppose there exist two pairs of ordered sub-supersolutions
(ψ1, Z1) and (ψ2, Z2) of (Pλ) with the property that ψ1 ≤ ψ2 ≤ Z1, ψ1 ≤
Z2 ≤ Z1 and ψ2 ̸≤ Z2. Additionally, assume that ψ2 and Z2 are not solutions
of (Pλ). Then there exist at least three solutions ui, i = 1, 2, 3 for (Pλ)where
u1 ∈ [ψ1, Z2], u2 ∈ [ψ2, Z1] and u3 ∈ [ψ1, Z1] \ ([ψ1, Z2] ∪ [ψ2, Z1]).

3.2. An eigenvalue problem

Let λ1 be the principal eigenvalue and ϕ1 be a corresponding eigenfunction
of {

−∆ϕ+ V (x)ϕ = λϕ, x ∈ Ω,
ϕ = 0, x ∈ ∂Ω,

(7)

If V ∈ L∞(Ω), then we can choose ϕ1 ∈ C2(Ω) ∩ C1(Ω̄) such that ϕ1 > 0 in Ω.
(See [7],[11] and [20]).

3.3. A singular problem

Lemma 3.3. (see [17]) Assume (H2). Then, the following singular problem{
−∆w + V (x)w = 1

wβ , in Ω,

w = 0, on ∂Ω.
(8)
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has a solution w ∈ C2(Ω) ∩ C(Ω̄) such that w(x) > 0 for x ∈ Ω and ∂w
∂η < 0 on

∂Ω where η is the outward unit normal to ∂Ω.

Proof. It has been proved in [17]. For the reader’s convenience, we recall it.

First, we consider an energy functional on W 1,2
0 (Ω) corresponding to (8) given

by

E(w) =
1

2

∫
Ω

|∇w|2dx− 1

1− β

∫
Ω

(w+)1−βdx+
1

2

∫
Ω

V (x)w2dx, w ∈W 1,2
0 (Ω).

Since this functional satisfies

E(w) =
1

2

∫
Ω

|∇w|2dx− 1

1− β

∫
Ω

(w+)1−βdx+
1

2

∫
Ω

V (x)w2dx,

≥ 1

2
∥∇w∥22 −

1

1− β
∥w∥1−β2 − cV

2
∥w∥22

=
1

2
(1− cV c1)∥∇w∥22 −

1

1− β
∥w∥1−β2

and since 0 < 1− β < 1, E(w) is coercive and weakly lower semicontinuous on

W 1,2
0 (Ω). It follows that E possesses a global minimizer w ∈W 1,2

0 (Ω).Moreover,
note that w ̸≡ 0 in Ω since E(0) = 0 > E(ϵϕ1) for small enough ϵ > 0.

Next we consider the polar decomposition w = w+ − w− for w ∈ W 1,2
0 (Ω)

which yields ∇w = ∇w+ −∇w−. Hence, if w is a global minimizer of E, then
|w| is also global minimizer of E, which implies that E(|w|) ≤ E(w). Since w
is a global minimizer of E, E(|w|) = E(w) holds if and only if w ≥ 0 a.e. in Ω.
Then, any global minimizer of E must satisfy w ≥ 0 a.e. in Ω.

Further, we recall that by the standard elliptic regularity theory a global
minimizer w ∈W 1,2

0 (Ω) of E belongs to C2(Ω) ∩ C(Ω̄) (see [12]).
Now, we will show that

w(x) ≥ e(x)∥e∥−
β

1+β
∞ in Ω,

where e is the solution of :{
−∆e+ ∥V ∥∞e = 1, x ∈ Ω,
e = 0, x ∈ ∂Ω.

Suppose Ω̃ := {x ∈ Ω : w(x) < e(x)∥e∥−
β

1+β
∞ } ≠ ∅. Then we obtain that

−∆(w − e∥e∥−
β

1+β
∞ ) = −V (x)w + ∥V ∥∞e∥e∥

− β
1+β

∞ +
1

wβ
− ∥e∥−

β
1+β

∞

= (∥V ∥∞ − V (x))w + ∥V ∥∞(e∥e∥−
β

1+β
∞ − w) +

1

wβ
− ∥e∥−

β
1+β

∞

≥ 1

wβ
− ∥e∥−

β
1+β

∞

> e(x)−β∥e∥
β2

1+β
∞ − ∥e∥−

β
1+β

∞

≥ ∥e∥−β∞ ∥e∥
β2

1+β
∞ − ∥e∥−

β
1+β

∞ = 0
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in Ω̃ and w − e∥e∥−
β

1+β
∞ = 0 on ∂Ω̃, which implies that w − e∥e∥−

β
1+β

∞ ≥ 0 in Ω̃

by the Maximum principle. This contradicts to the definition of Ω̃. Hence, we

have w(x) ≥ e(x)∥e∥−
β

1+β
∞ on Ω. Since e > 0 in Ω and ∂e

∂η < 0 on ∂Ω, it follows

that w(x) > 0 for x ∈ Ω and ∂w
∂η < 0 on ∂Ω. □

4. Proof of the Main Theorems

4.1. Proof of Theorem 1.1

Proof. First, we construct a positive supersolution Z1 for all λ > 0. Define
f∗(s) := maxt∈[0,s] f(t). Then, clearly f(s) ≤ f∗(s) and f∗(s) is nondecreasing
for all s ∈ [0,∞). Then there exists Mλ ≫ 1 such that for each λ > 0

M1−β
λ ≥ λf∗(Mλ∥w∥∞). (9)

Let Z1 =Mλw. Then, by using (9) and the definition of f∗, we have

−∆Z1 + V (x)Z1 =
Mλ

wβ

≥ λ
f∗(Mλ∥w∥∞)

Mβ
λw

β
≥ λ

f∗(Mλw)

(Mλw)β
≥ λ

f(Mλw)

(Mλw)β
= λ

f(Z1)

Zβ1

in Ω and Z1 = 0 on ∂Ω, which implies that Z1 is a supersolution of (Pλ) for all
λ > 0.

Next, we construct a positive subsolution ψ1 satisfying ψ1 ≤ Z1 for all λ.

Since limu→0+
f(u)
uβ = ∞, there exists a sufficiently small mλ > 0 such that

λ1mλϕ1 ≤ λ
f(mλϕ1)

(mλϕ1)β
.

Let ψ1 := mλϕ1. Then we obtain

−∆ψ1 + V (x)ψ1 = λ1mλϕ1 ≤ λ
f(mλϕ1)

(mλϕ1)β
= λ

f(ψ1)

ψβ1

in Ω and ψ1 = 0 on ∂Ω. Hence, ψ1 is a positive subsolution of (Pλ) for all λ > 0.
Now, it is possible to choose mλ > 0 small enough so that ψ1(x) ≤ Z1(x) since
ψ(x) > 0 and Z1(x) > 0 in Ω and ∂Z1

∂η < 0 on ∂Ω. Therefore, by Lemma 3.1,

there exists a solution uλ such that ψ1 ≤ uλ ≤ Z1 for all λ > 0. □

4.2. Proof of Theorem 1.2

Proof. We first construct a positive supersolution of (Pλ) for λ < aβ+1

f∗(a)∥w∥β+1
∞

.

Let Z2 = a w
∥w∥∞

. Then it follows

−∆Z2 + V (x)Z2 =
a

∥w∥∞wβ

> λ
f∗(a)

(a w
∥w∥∞

)β
≥ λ

f∗(a w
∥w∥∞

)

(a w
∥w∥∞

)β
≥
f(a w

∥w∥∞
)

(a w
∥w∥∞

)β
= λ

f(Z2)

Zβ2
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in Ω when λ < aβ+1

f∗(a)∥w∥β+1
∞

. Clearly, Z2 = 0 on ∂Ω. Hence, Z2 is a positive

supersolution of (Pλ) for λ <
aβ+1

f∗(a)∥w∥β+1
∞

.

Now we construct a positive subsolution ψ2 of the following problem{
−∆u+ ∥V ∥∞u = λ f(u)

uβ , in Ω.

u = 0, on ∂Ω,
(10)

Then, ψ2 is a positive subsolution of (Pλ) since

−∆ψ2 + V (x)ψ2 ≤ −∆ψ2 + ∥V ∥∞ψ2 ≤ λ
f(ψ2)

ψβ2
.

We recall f̃(u) = f(u)
uβ − f(d)

dβ
B∥V ∥∞u. Note that f̃(u) is nondecreasing on [a, b].

Let a∗ ∈ (0, a] be such that f̃(a∗) = min0<x≤a f̃(x) and define a nonsingular
function h ∈ C([0,∞)) such that

h(u) =

{
f̃(a∗), u ≤ a∗,

f̃(u) u ≥ a,

so that h is nondecreasing on (0, a] and h(u) ≤ f̃(u) for all u > 0.

Figure 4. Graph of h

Now we consider the following nonsingular problem:{
−∆u = λh(u) in Ω

u = 0 on ∂Ω.
(11)

For 0 < ϵ < R and δ, µ > 1 let us define ρ : [0, R] → [0, 1] by

ρ(r) =

{
1, 0 ≤ r ≤ ϵ,

1− (1− (R−r
R−ϵ )

µ)δ, ϵ < r ≤ R.

Then we find

ρ′(r) =

{
0, 0 ≤ r ≤ ϵ,

− δµ
R−ϵ (1− (R−r

R−ϵ )
µ)δ−1(R−r

R−ϵ )
µ−1, ϵ < r ≤ R.
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Let v(r) = dρ(r). Notice that |v′(r)| ≤ d δµ
R−ϵ . Define ψ as the radially symmetric

solution of {
−∆ψ = λh(v(|x|)), in BR(0),
ψ = 0, on ∂BR(0).

Then ψ satisfies {
−(rN−1(ψ′(r)))′ = λrN−1h(v(r)),

ψ′(0) = 0, ψ(R) = 0.
(12)

Integrating the first equation of (12) for 0 < r < R, we have

−ψ′(r) =
λ

rN−1

∫ r

0

sN−1h(v(s)) ds. (13)

Here we claim that

ψ(r) ≥ v(r), ∀ 0 ≤ r ≤ R (14)

and

∥ψ∥∞ ≤ b (15)

when
dβ+1

f(d)

1

B
< λ <

2dβ

f(d)AB
b. In order to prove (14), it is enough to show that

−ψ′(r) ≥ −v′(r) ∀ 0 ≤ r ≤ R (16)

as ψ(R) = 0 = v(R). Notice that for 0 ≤ r ≤ ϵ, ψ′(r) ≤ 0 = v′(r). Hence, for
r > ϵ we obtain from (13)

−ψ′(r) =
λ

rN−1

∫ r

0

sN−1h(v(s)) ds

>
λ

RN−1

∫ ϵ

0

sN−1h(v(s)) ds

=
λ

RN−1

ϵN

N
h(d) =

λ

RN−1

ϵN

N
f̃(d).

If λ > d
f̃(d)

NRN−1

(R−ϵ)ϵN δµ, then we can show (16) as |v′(r)| ≤ d δµ
R−ϵ . Note that

inf
ϵ

d

f̃(d)

NRN−1

(R− ϵ)ϵN
δµ =

d

f̃(d)

(N + 1)N+1

R2NN−1
δµ

and is achieved at ϵ = NR
N+1 . Hence, if λ > d

f̃(d)

(N+1)N+1

R2NN−1 , then in the definition of

ρ we can choose ϵ = NR
N+1 and the values of δ and µ so that λ ≥ d

f̃(d)
NRN−1

(R−ϵ)ϵN δµ.

Thus, we obtain (16) when λ >
d

f̃(d)

(N + 1)N+1

R2NN−1
=
dβ+1

f(d)

1

B
, observing that

f̃(d) = (1−B∥V ∥∞)
f(d)

dβ
. (17)
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Next, integrating (13) from t to R, we obtain

ψ(t) =

∫ R

t

λ

rN−1

(∫ r

0

sN−1h(v(s)) ds

)
dr

≤
∫ R

t

λ

rN−1
h(d)

(∫ r

0

sN−1 ds

)
dr

≤ λ
h(d)

N

∫ R

0

r dr = λ
f̃(d)

2N
R2.

Hence, if λ <
b

f̃(d)

2N

R2
=

2dβ

f(d)AB
b (using (17) again), then it follows ∥ψ∥∞ ≤ b.

Finally, we have

v(r) ≤ ψ(r) ≤ b,∀ 0 ≤ r ≤ R

when
d

f(d)

1

B
< λ <

2dβ

f(d)AB
b. Now, from the fact v(r) ≤ ψ(r) ≤ b,∀ 0 ≤ r ≤ R

and h is nondecreasing on [0, b], we can see

−∆ψ = λh(v) ≤ λh(ψ), in BR(0) and ψ = 0 on ∂BR(0).

Let us define ξ(x) = ψ(x) if x ∈ BR(0) and ξ(x) = 0 if x ∈ Ω \ BR(0). Then,
ξ is a nonnegative subsolution of (11) for dβ+1

f(d)
1
B < λ < 2b

f(d)AB . However, ξ is

not strictly positive in Ω. We iterate this subsolution ξ in a suitable manner,
we obtain a positive subsolution ψ2 of (11) such that ψ2 > 0 in Ω (see details
in [15]).

Finally, since λ > dβ+1

f(d)
1
B , we obtain

−∆ψ2 ≤ λh(ψ2) ≤ λf̃(ψ2) = λ

(
f(ψ2)

ψβ2
− f(d)

dβ+1
B∥V ∥∞ψ2

)

< λ

(
f(ψ2)

ψβ2
− 1

λ
∥V ∥∞ψ2

)

= λ
f(ψ2)

ψβ2
− ∥V ∥∞ψ2,

which implies that ψ2 is a positive subsolution of (10).
In the proof of Theorem 1.1 we have a sufficiently small subsolution ψ1 =

mλϕ1 such that ψ1 ≤ Z2 and a sufficiently large supersolution Z1 =Mλw such
that ψ2 ≤ Z1. Hence, there exist a positive solutions u1 and u2 of (Pλ) such
that ψ1 ≤ u1 ≤ Z2 and ψ2 ≤ u2 ≤ Z1. Note that u1 ̸= u2 since ψ2 ̸≤ Z2.
Therefore by Lemma 3.2, there exists a positive solution u3 such that u3 ∈
[ψ1, Z1] \ ([ψ1, Z2] ∪ [ψ2, Z1]). □
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