East Asian Math. J.
Vol. 39 (2023), No. 3, pp. 355-367
YNMS
http://dx.doi.org/10.7858/eamj.2023.027

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR A SCHRÖDINGER-TYPE SINGULAR FALLING ZERO PROBLEM

Eunkyung Ko*

Abstract

Extending [14], we establish the existence of multiple positive solutions for a Schrödinger-type singular elliptic equation: $$
\left\{\begin{aligned} -\Delta u+V(x) u & =\lambda \frac{f(u)}{u^{\beta}}, & & x \in \Omega \\ u & =0, & & x \in \partial \Omega \end{aligned}\right.
$$ where $0 \in \Omega$ is a bounded domain in $\mathbb{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega, \beta \in[0,1), f \in C[0, \infty), V: \Omega \rightarrow \mathbb{R}$ is a bounded function and λ is a positive parameter. In particular, when $f(s)>0$ on $[0, \sigma)$ and $f(s)<0$ for $s>\sigma$, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

1. Introduction

We consider a Schrödinger- type singluar problem on \mathbb{R}^{N}

$$
\left(P_{\lambda}\right) \quad\left\{\begin{aligned}
-\Delta u+V(x) u & =\lambda \frac{f(u)}{u^{\beta}}, & & x \in \Omega \\
u & =0, & & x \in \partial \Omega
\end{aligned}\right.
$$

where $0 \in \Omega$ is a bounded domain in $\mathbb{R}^{N}, N \geq 1,0 \leq \beta<1, V \in L^{\infty}(\Omega)$ and λ is a positive parameter. We assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function satisfying
(H1) There exists $\sigma>0$ such that $f(s)>0$ for all $0 \leq s<\sigma$ and $f(s)<0$ for all $s>\sigma$.
We further assume that $V \in L^{\infty}(\Omega)$ satisfies the condition:
(H2) There exists a constant $c_{V}>0$ such that $V(x) \geq-c_{V}$ for $x \in \Omega$ and $1-c_{V} c_{1}>0$, where $c_{1}>0$ is a constant such that $\int_{\Omega}|u|^{2} d x \leq$

[^0]$$
c_{1} \int_{\Omega}|\nabla u|^{2} d x \forall u \in W_{0}^{1,2}(\Omega)
$$

The first equation in $\left(P_{\lambda}\right)$ is derived from the nonlinear Schrödinger equation (details in [21]). Nonlinear Schrödinger equations have been studied widely to demonstrate the existence of solutions which act on V in the whole space \mathbb{R}^{N} (see [2], [13], [19]) or on bounded domains (see [10]). In the case when $V \equiv 0$, the existence of multiple positive solutions of $\left(P_{\lambda}\right)$ with falling zero nonlinearity has been widely investigated for a long time (see [3],[4], [5], [18] and [22] and references therein). In this paper, when $V \in L^{\infty}(\Omega)$ satisfies (H2), by using the method of sub and supersolutions, we establish the existence of a positive solution of $\left(P_{\lambda}\right)$ for all $\lambda>0$ and the existence of multiple positive solutions of $\left(P_{\lambda}\right)$ for a certain range of λ.

We first state the existence result:
Theorem 1.1. Assume (H1) and (H2). Then $\left(P_{\lambda}\right)$ has a positive solution $u_{\lambda} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ for all $\lambda>0$.

Next, to state the multiplicity result, we let

$$
A=\frac{(N+1)^{N+1}}{N^{N}} \text { and } B=\frac{R^{2}}{A N+\|V\|_{\infty} R^{2}},
$$

where R is the radius of the largest inscribed ball B_{R} in Ω. We define $f^{*}(s):=$ $\max _{t \in[0, s]} f(t)$ and for any $0<a<d<b$,

$$
Q(a, d, b):=\frac{\frac{d^{\beta+1}}{f(d)} \frac{1}{B}}{\min \left\{\frac{a^{\beta+1}}{f^{*}(a)\|w\|_{\infty}^{\beta+1}}, \frac{2 d^{\beta}}{f(d) A B} b\right\}} .
$$

Theorem 1.2. Assume (H1) and (H2). If there exist a, b and d with $0<a<$ $d<b$ such that $Q(a, d, b)<1$,

$$
\tilde{f}(s):=\frac{f(s)}{s^{\beta}}-\frac{f(d)}{d^{\beta+1}} B\|V\|_{\infty} s>0, \forall s \in[0, b]
$$

and $\tilde{f}(s)$ is nondecreasing on $[a, b]$, then the problem $\left(P_{\lambda}\right)$ has at least three positive solutions $u_{\lambda} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ for all $\lambda_{*}<\lambda<\lambda^{*}$, where

$$
\lambda_{*}=\frac{d^{\beta+1}}{f(d)} \frac{1}{B} \text { and } \lambda^{*}=\min \left\{\frac{a^{\beta+1}}{f^{*}(a)\|w\|_{\infty}^{\beta+1}}, \frac{2 d^{\beta}}{f(d) A B} b\right\} .
$$

In order to obtain at least three positive solutions for a certain range of λ using the method of sub and supersolution, it is important to construct two pairs of sub and supersolutions $\left(\psi_{1}, Z_{1}\right),\left(\psi_{2}, Z_{2}\right)$ of $\left(P_{\lambda}\right)$ with the property that $\psi_{1} \leq \psi_{2} \leq Z_{1}, \psi_{1} \leq Z_{2} \leq Z_{1}$ such that $\psi_{2} \not \leq Z_{2}$ so that three solution results in [1] can be applied. However, the term $V(x)$ acting on u gives a nontrivial difficulty in the construction of the second pair of sub and supersolution $\left(\psi_{2}, Z_{2}\right)$ satisfying $\psi_{2} \not \leq Z_{2}$. We overcome the difficulty from the singularity by the arguments used in [15] and [22] and by combining $V(x) u$ and $\frac{f(u)}{u^{\beta}}$ with a suitable

Figure 1. S-shaped bifurcation diagram showing the existence of multiple positive solutions for $\left(P_{\lambda}\right)$
way, that is $\tilde{f}(s)=\frac{f(s)}{s^{\beta}}-\frac{f(d)}{d^{\beta+1}} B\|V\|_{\infty} s$, we enable to construct the second pair of sub and supersolution $\left(\psi_{2}, Z_{2}\right)$ satisfying $\psi_{2} \not \leq Z_{2}$.

This paper is organized as follows: In Section 2, we analyze the phosphorous cycling model which is applicable to our results. Moreover, we provide S-shaped bifurcation curves verifying Theorem 1.1 and Theorem 1.2 obtained numerically via Quadrature method. In Section 3, we recall a method of sub and supersolutions for $\left(P_{\lambda}\right)$ and a three solution theorem for singular problem $\left(P_{\lambda}\right)$. Section 4 is devoted to the proofs of Theorem 1.1 and Theorem 1.2.

2. Example and numerical results

In this section, we introduce a model which is applicable in our main results. A simple model reads as

$$
\left\{\begin{align*}
-\Delta u+V(x) u & =\frac{\lambda}{u^{\beta}}\left(\tau-u+\frac{c u^{4}}{1+u^{4}}\right), & & x \in \Omega \tag{1}\\
u & =0, & & x \in \partial \Omega
\end{align*}\right.
$$

This model describes phosphorous cycling in stratified lake and the colonization of barren soils in drylands by vegetation. In particular, it illustrates the decrease in the amount of phosphorous in the eqilimnion (upper layer) and the rapid recycling that occurs when the hypolimnion (lower layer) is depleted of oxygen. It also describes the colonization of barren soils in drylands by vegetation (more details in [5] and [6]).

Denote $g(s):=\frac{f(s)}{s^{\beta}}$ for $s>0$. Let $0<\beta<1$ be arbitrary fixed. Now we provide the necessary conditions for the value of $\tau>0$ and $c>0$ in order to obtain the existence and multiplicity result Theorem 1.1 and Theorem 1.2.

Proposition 2.1. If $c>\frac{16 \beta}{(4-\beta)^{2}} \tau+\frac{16(1-\beta)}{(4-\beta)^{2}} \sqrt[4]{\frac{4-\beta}{4+\beta}}=: c(\tau)$ for each $\tau>0$, then there exist $0<m<M<\infty$ such that $g^{\prime}(m)=g^{\prime}(M)=0$.

Proof. As $g^{\prime}(s)=\frac{d}{d s}\left[\frac{f(s)}{s^{\beta}}\right]=\frac{s f^{\prime}(s)-\beta f(s)}{s^{\beta+1}}$, we evaluate

$$
\begin{aligned}
s f^{\prime}(s)-\beta f(s) & =-s+\frac{4 c s^{4}}{\left(1+s^{4}\right)^{2}}-\tau \beta+\beta s-\frac{\beta c s^{4}}{1+s^{4}} \\
& =\frac{c s^{4}\left(4-\beta-\beta s^{4}\right)}{\left(1+s^{4}\right)^{2}}-\tau \beta-(1-\beta) s=: j(s)-i(s)
\end{aligned}
$$

where $j(s):=\frac{c s^{4}\left(4-\beta-\beta s^{4}\right)}{\left(1+s^{4}\right)^{2}}$ and $i(s):=\tau \beta+(1-\beta) s$ for $s>0$. We claim that for each $\tau>0$ if $c>c(\tau)$, then $j(s)-i(s)=0$ has two positive solutions. This implies that $g^{\prime}(s)$ has exactly two zeros in $(0, \infty)$. Indeed, as $j^{\prime}(s)=\frac{4 c s^{3}\left(4-\beta-(4+\beta) s^{4}\right)}{\left(1+s^{4}\right)^{3}}$, it follows that $j(s)$ achieves exactly one local maximum $\frac{c(4-\beta)^{2}}{16}$ at $s=\sqrt[4]{\frac{4-\beta}{4+\beta}}$ in $(0, \infty)$. Hence, if $j\left(\sqrt[4]{\frac{4-\beta}{4+\beta}}\right)>i\left(\sqrt[4]{\frac{4-\beta}{4+\beta}}\right)$, then the linear line $i(s)$ will cut $j(s)$ at exactly two different points on $(0, \infty)$. This implies that there exist exactly two positive critical points $0<m<\sqrt[4]{\frac{4-\beta}{4+\beta}}<$ $M<\infty$ such that $g^{\prime}(m)=g^{\prime}(M)=0$ if $c>\frac{16 \beta}{(4-\beta)^{2}} \tau+\frac{16(1-\beta)}{(4-\beta)^{2}} \sqrt[4]{\frac{4-\beta}{4+\beta}}$.
Proposition 2.2. If $\tau>\frac{3}{4} \sqrt[4]{\frac{3}{5}}-\frac{1}{4}\left(\sqrt[4]{\frac{3}{5}}\right)^{5}=: \tau_{0}$, then there exists a unique $\sigma>0$ such that $g(\sigma)=0$.
Proof. Since g has the local minimum at $s=m$, we can see that if $g(m)>0$, then g has a unique zero in $(0, \infty)$. Now it is enough to show $f(m)>0$ as $g(m)=\frac{f(m)}{m^{\beta}}$. Note that m is the solution of $j(s)=i(s)$ at the previous lemma. Hence, m satisfies

$$
\begin{equation*}
\frac{c m^{4}}{\left(1+m^{4}\right)^{2}}=\frac{\tau \beta+(1-\beta) m}{4-\beta-\beta m^{4}} . \tag{2}
\end{equation*}
$$

Hence, using (2), we evaluate

$$
f(m)=\tau-m+\frac{c m^{4}}{1+m^{4}}=\tau-m+\frac{(\tau \beta+(1-\beta) m)\left(1+m^{4}\right)}{4-\beta-\beta m^{4}}
$$

which is simplified by

$$
f(m)=\frac{4 \tau+m^{5}-3 m}{4-\beta-\beta m^{4}}
$$

Now we note $4-\beta-\beta m^{4}>0$ as $0<m^{4}<\frac{4-\beta}{4+\beta}$. Hence, $f(m)>0$ if $\tau>$ $\frac{1}{4}\left(3 m-m^{5}\right)$. Observing that $\sup _{\left(0, \sqrt[4]{\frac{4-\beta}{4+\beta}}\right)} \frac{1}{4}\left(3 m-m^{5}\right)$ is achieved at $m=\sqrt[4]{\frac{3}{5}}$ and noting $\sqrt[4]{\frac{3}{5}}<\sqrt[4]{\frac{4-\beta}{4+\beta}}$ as $0<\beta<1$, we obtain $f(m)>0$ if $\tau>\frac{3}{4} \sqrt[4]{\frac{3}{5}}-\frac{1}{4}\left(\sqrt[4]{\frac{3}{5}}\right)^{5}$. This implies that g has an unique zero $\sigma>0$ if $\tau>\tau_{0}$.

Hence, for all $\tau>\tau_{0}$ and $c>\frac{16 \beta}{(4-\beta)^{2}} \tau+\frac{16(1-\beta)}{(4-\beta)^{2}} \sqrt[4]{\frac{4-\beta}{4+\beta}}$, the function $g(s)=$ $\frac{f(s)}{s^{\beta}}$ satisfies the condition (H1) and the graph of g is given in Figure 2.

Figure 2. Graph of g satisfies (H1) for $c>c(\tau)$ and $\tau>\tau_{0}$.

Now we provide the bifurcation curves of models (1) obtained numerically via Quadrature method when τ and c are satisfied with Proposition 2.1 and Proposition 2.2 and $V(x)$ is a constant with $\|V\|_{\infty} \approx 0$. Consider the following the one dimensional problem of (1) taking $V(x)$ as a constant $\mu \in \mathbb{R}$

$$
\left\{\begin{align*}
-u^{\prime \prime}+\mu u & =\lambda \frac{f(u)}{u^{\beta}}, \quad x \in(0,1) \tag{3}\\
u(0)=0 & =u(1)
\end{align*}\right.
$$

where $f(u)=\tau-u+\frac{c u^{4}}{1+u^{4}}$. It is well-known that if u is a positive solution of (3), then u is symmetric about $x=\frac{1}{2}, u$ is increasing on ($0, \frac{1}{2}$) and decreasing on $\left(\frac{1}{2}, 1\right)$ and $\|u\|_{\infty}=u\left(\frac{1}{2}\right)$. By integrating (3) over ($0, \frac{1}{2}$) and using the above propeties, we deduce

$$
\begin{equation*}
\frac{1}{\sqrt{2}}=\int_{0}^{\rho} \frac{d s}{\sqrt{\lambda[F(\rho)-F(s)]-\frac{\mu}{2}\left(\rho^{2}-s^{2}\right)}}:=G[\rho, \lambda], \tag{4}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} \frac{f(s)}{s^{\beta}} d s$ and $\rho=\|u\|_{\infty}$. Conversely, by the modification of Quadrature method in [3], it can be shown that if for each $\rho>0$ there exists $\lambda>0$ satisfying (4), then (3) has a positive solution u_{λ} with $\|u\|_{\infty}=\rho$. Here we provide the S-shaped bifurcation curve for (3) with the specific value of τ and c satisfying the above lemma and the various values of μ in Figure 3.

3. Preliminary

In this section, we recall a method of obtaining sub and supersolutions and a three solution theorem for the singular problem $\left(P_{\lambda}\right)$. We also recall results on the principal eigenvalue and eigenfunction of an eigenvalue problem. Finally, we prove that the singular problem (8) has a positive solution.

3.1. Method of sub- and supersolutions

A subsolution of $\left(P_{\lambda}\right)$ is defined as a function $\psi: \bar{\Omega} \rightarrow \mathbb{R}$ satisfying

$$
\begin{cases}-\Delta \psi+V(x) \psi \leq \lambda \frac{f(\psi)}{\psi^{\beta}}, & x \in \Omega \tag{5}\\ \psi>0, & x \in \Omega \\ \psi=0, & x \in \partial \Omega\end{cases}
$$

Figure 3. S-shaped bifurcation Diagram of (3) for the value of $\tau=10$ and $c=100$ via Mathematica
while a supersolution of $\left(P_{\lambda}\right)$ is defined as a function $Z: \bar{\Omega} \rightarrow \mathbb{R}$ satisfying

$$
\begin{cases}-\Delta Z+V(x) Z \geq \lambda \frac{f(Z)}{Z^{\beta}}, & x \in \Omega \tag{6}\\ Z>0, & x \in \Omega \\ Z=0, & x \in \partial \Omega\end{cases}
$$

The following Lemmas hold.
Lemma 3.1. ([8]) If a subsolution ψ and a supersolution Z of $\left(P_{\lambda}\right)$ exist such that $\psi \leq Z$ on $\bar{\Omega}$, then $\left(P_{\lambda}\right)$ has at least one solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ satisfying $\psi \leq u \leq Z$ on $\bar{\Omega}$.

Lemma 3.2. ([9]) Suppose there exist two pairs of ordered sub-supersolutions $\left(\psi_{1}, Z_{1}\right)$ and $\left(\psi_{2}, Z_{2}\right)$ of $\left(P_{\lambda}\right)$ with the property that $\psi_{1} \leq \psi_{2} \leq Z_{1}, \psi_{1} \leq$ $Z_{2} \leq Z_{1}$ and $\psi_{2} \not \leq Z_{2}$. Additionally, assume that ψ_{2} and Z_{2} are not solutions of $\left(P_{\lambda}\right)$. Then there exist at least three solutions $u_{i}, i=1,2,3$ for $\left(P_{\lambda}\right)$ where $u_{1} \in\left[\psi_{1}, Z_{2}\right], u_{2} \in\left[\psi_{2}, Z_{1}\right]$ and $u_{3} \in\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{2}\right] \cup\left[\psi_{2}, Z_{1}\right]\right)$.

3.2. An eigenvalue problem

Let λ_{1} be the principal eigenvalue and ϕ_{1} be a corresponding eigenfunction of

$$
\begin{cases}-\Delta \phi+V(x) \phi=\lambda \phi, & x \in \Omega \tag{7}\\ \phi=0, & x \in \partial \Omega\end{cases}
$$

If $V \in L^{\infty}(\Omega)$, then we can choose $\phi_{1} \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ such that $\phi_{1}>0$ in Ω. (See [7],[11] and [20]).

3.3. A singular problem

Lemma 3.3. (see [17]) Assume (H2). Then, the following singular problem

$$
\left\{\begin{array}{l}
-\Delta w+V(x) w=\frac{1}{w^{\beta}}, \text { in } \Omega \tag{8}\\
w=0, \text { on } \partial \Omega
\end{array}\right.
$$

has a solution $w \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that $w(x)>0$ for $x \in \Omega$ and $\frac{\partial w}{\partial \eta}<0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.
Proof. It has been proved in [17]. For the reader's convenience, we recall it. First, we consider an energy functional on $W_{0}^{1,2}(\Omega)$ corresponding to (8) given by

$$
E(w)=\frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x-\frac{1}{1-\beta} \int_{\Omega}\left(w^{+}\right)^{1-\beta} d x+\frac{1}{2} \int_{\Omega} V(x) w^{2} d x, w \in W_{0}^{1,2}(\Omega)
$$

Since this functional satisfies

$$
\begin{aligned}
E(w) & =\frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x-\frac{1}{1-\beta} \int_{\Omega}\left(w^{+}\right)^{1-\beta} d x+\frac{1}{2} \int_{\Omega} V(x) w^{2} d x \\
& \geq \frac{1}{2}\|\nabla w\|_{2}^{2}-\frac{1}{1-\beta}\|w\|_{2}^{1-\beta}-\frac{c_{V}}{2}\|w\|_{2}^{2} \\
& =\frac{1}{2}\left(1-c_{V} c_{1}\right)\|\nabla w\|_{2}^{2}-\frac{1}{1-\beta}\|w\|_{2}^{1-\beta}
\end{aligned}
$$

and since $0<1-\beta<1, E(w)$ is coercive and weakly lower semicontinuous on $W_{0}^{1,2}(\Omega)$. It follows that E possesses a global minimizer $w \in W_{0}^{1,2}(\Omega)$. Moreover, note that $w \not \equiv 0$ in Ω since $E(0)=0>E\left(\epsilon \phi_{1}\right)$ for small enough $\epsilon>0$.

Next we consider the polar decomposition $w=w^{+}-w^{-}$for $w \in W_{0}^{1,2}(\Omega)$ which yields $\nabla w=\nabla w^{+}-\nabla w^{-}$. Hence, if w is a global minimizer of E, then $|w|$ is also global minimizer of E, which implies that $E(|w|) \leq E(w)$. Since w is a global minimizer of $E, E(|w|)=E(w)$ holds if and only if $w \geq 0$ a.e. in Ω. Then, any global minimizer of E must satisfy $w \geq 0$ a.e. in Ω.

Further, we recall that by the standard elliptic regularity theory a global minimizer $w \in W_{0}^{1,2}(\Omega)$ of E belongs to $C^{2}(\Omega) \cap C(\bar{\Omega})$ (see [12]).

Now, we will show that

$$
w(x) \geq e(x)\|e\|_{\infty}^{-\frac{\beta}{1+\beta}} \text { in } \Omega
$$

where e is the solution of :

$$
\begin{cases}-\Delta e+\|V\|_{\infty} e=1, & x \in \Omega \\ e=0, & x \in \partial \Omega\end{cases}
$$

Suppose $\tilde{\Omega}:=\left\{x \in \Omega: w(x)<e(x)\|e\|_{\infty}^{-\frac{\beta}{1+\beta}}\right\} \neq \emptyset$. Then we obtain that

$$
\begin{aligned}
-\Delta\left(w-e\|e\|_{\infty}^{-\frac{\beta}{1+\beta}}\right) & =-V(x) w+\|V\|_{\infty} e\|e\|_{\infty}^{-\frac{\beta}{\infty^{1+\beta}}}+\frac{1}{w^{\beta}}-\|e\|_{\infty}^{-\frac{\beta}{1+\beta}} \\
& =\left(\|V\|_{\infty}-V(x)\right) w+\|V\|_{\infty}\left(e\|e\|_{\infty}^{-\frac{\beta}{1+\beta}}-w\right)+\frac{1}{w^{\beta}}-\|e\|_{\infty}^{-\frac{\beta}{1+\beta}} \\
& \geq \frac{1}{w^{\beta}}-\|e\|_{\infty}^{-\frac{\beta}{1+\beta}} \\
& >e(x)^{-\beta}\|e\|_{\infty}^{\frac{\beta^{2}}{1+\beta}}-\|e\|_{\infty}^{-\frac{\beta}{1+\beta}} \\
& \geq\|e\|_{\infty}^{-\beta}\|e\|_{\infty}^{\frac{\beta^{2}}{1+\beta}}-\|e\|_{\infty}^{-\frac{\beta}{1+\beta}}=0
\end{aligned}
$$

in $\tilde{\Omega}$ and $w-e\|e\|_{\infty^{-\frac{\beta}{1+\beta}}}=0$ on $\partial \tilde{\Omega}$, which implies that $w-e\|e\|_{\infty^{-\frac{\beta}{1+\beta}}}^{\text {a }} \geq 0$ in $\tilde{\Omega}$ by the Maximum principle. This contradicts to the definition of $\tilde{\Omega}$. Hence, we have $w(x) \geq e(x)\|e\|_{\infty}^{-\frac{\beta}{1+\beta}}$ on Ω. Since $e>0$ in Ω and $\frac{\partial e}{\partial \eta}<0$ on $\partial \Omega$, it follows that $w(x)>0$ for $x \in \Omega$ and $\frac{\partial w}{\partial \eta}<0$ on $\partial \Omega$.

4. Proof of the Main Theorems

4.1. Proof of Theorem 1.1

Proof. First, we construct a positive supersolution Z_{1} for all $\lambda>0$. Define $f^{*}(s):=\max _{t \in[0, s]} f(t)$. Then, clearly $f(s) \leq f^{*}(s)$ and $f^{*}(s)$ is nondecreasing for all $s \in[0, \infty)$. Then there exists $M_{\lambda} \gg 1$ such that for each $\lambda>0$

$$
\begin{equation*}
M_{\lambda}^{1-\beta} \geq \lambda f^{*}\left(M_{\lambda}\|w\|_{\infty}\right) \tag{9}
\end{equation*}
$$

Let $Z_{1}=M_{\lambda} w$. Then, by using (9) and the definition of f^{*}, we have

$$
\begin{aligned}
-\Delta Z_{1}+V(x) Z_{1} & =\frac{M_{\lambda}}{w^{\beta}} \\
& \geq \lambda \frac{f^{*}\left(M_{\lambda}\|w\|_{\infty}\right)}{M_{\lambda}^{\beta} w^{\beta}} \geq \lambda \frac{f^{*}\left(M_{\lambda} w\right)}{\left(M_{\lambda} w\right)^{\beta}} \geq \lambda \frac{f\left(M_{\lambda} w\right)}{\left(M_{\lambda} w\right)^{\beta}}=\lambda \frac{f\left(Z_{1}\right)}{Z_{1}^{\beta}}
\end{aligned}
$$

in Ω and $Z_{1}=0$ on $\partial \Omega$, which implies that Z_{1} is a supersolution of $\left(P_{\lambda}\right)$ for all $\lambda>0$.

Next, we construct a positive subsolution ψ_{1} satisfying $\psi_{1} \leq Z_{1}$ for all λ. Since $\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u^{\beta}}=\infty$, there exists a sufficiently small $m_{\lambda}>0$ such that

$$
\lambda_{1} m_{\lambda} \phi_{1} \leq \lambda \frac{f\left(m_{\lambda} \phi_{1}\right)}{\left(m_{\lambda} \phi_{1}\right)^{\beta}}
$$

Let $\psi_{1}:=m_{\lambda} \phi_{1}$. Then we obtain

$$
-\Delta \psi_{1}+V(x) \psi_{1}=\lambda_{1} m_{\lambda} \phi_{1} \leq \lambda \frac{f\left(m_{\lambda} \phi_{1}\right)}{\left(m_{\lambda} \phi_{1}\right)^{\beta}}=\lambda \frac{f\left(\psi_{1}\right)}{\psi_{1}^{\beta}}
$$

in Ω and $\psi_{1}=0$ on $\partial \Omega$. Hence, ψ_{1} is a positive subsolution of $\left(P_{\lambda}\right)$ for all $\lambda>0$. Now, it is possible to choose $m_{\lambda}>0$ small enough so that $\psi_{1}(x) \leq Z_{1}(x)$ since $\psi(x)>0$ and $Z_{1}(x)>0$ in Ω and $\frac{\partial Z_{1}}{\partial \eta}<0$ on $\partial \Omega$. Therefore, by Lemma 3.1, there exists a solution u_{λ} such that $\psi_{1} \leq u_{\lambda} \leq Z_{1}$ for all $\lambda>0$.

4.2. Proof of Theorem 1.2

Proof. We first construct a positive supersolution of $\left(P_{\lambda}\right)$ for $\lambda<\frac{a^{\beta+1}}{f^{*}(a)\|w\|_{\infty}^{\beta+1}}$.
Let $Z_{2}=a \frac{w}{\|w\|_{\infty}}$. Then it follows

$$
\begin{aligned}
-\Delta Z_{2}+V(x) Z_{2} & =\frac{a}{\|w\|_{\infty} w^{\beta}} \\
& >\lambda \frac{f^{*}(a)}{\left(a \frac{w}{\|w\|_{\infty}}\right)^{\beta}} \geq \lambda \frac{f^{*}\left(a \frac{w}{\|w\|_{\infty}}\right)}{\left(a \frac{w}{\|w\|_{\infty}}\right)^{\beta}} \geq \frac{f\left(a \frac{w}{\|w\|_{\infty}}\right)}{\left(a \frac{w}{\|w\|_{\infty}}\right)^{\beta}}=\lambda \frac{f\left(Z_{2}\right)}{Z_{2}^{\beta}}
\end{aligned}
$$

in Ω when $\lambda<\frac{a^{\beta+1}}{f^{*}(a)\|w\|_{\infty}^{\beta+1}}$. Clearly, $Z_{2}=0$ on $\partial \Omega$. Hence, Z_{2} is a positive supersolution of $\left(P_{\lambda}\right)$ for $\lambda<\frac{a^{\beta+1}}{f^{*}(a)\|w\|_{\infty}^{\beta+1}}$.

Now we construct a positive subsolution ψ_{2} of the following problem

$$
\left\{\begin{array}{l}
-\Delta u+\|V\|_{\infty} u=\lambda \frac{f(u)}{u^{\beta}}, \text { in } \Omega . \tag{10}\\
u=0, \text { on } \partial \Omega
\end{array}\right.
$$

Then, ψ_{2} is a positive subsolution of $\left(P_{\lambda}\right)$ since

$$
-\Delta \psi_{2}+V(x) \psi_{2} \leq-\Delta \psi_{2}+\|V\|_{\infty} \psi_{2} \leq \lambda \frac{f\left(\psi_{2}\right)}{\psi_{2}^{\beta}}
$$

We recall $\tilde{f}(u)=\frac{f(u)}{u^{\beta}}-\frac{f(d)}{d^{\beta}} B\|V\|_{\infty} u$. Note that $\tilde{f}(u)$ is nondecreasing on $[a, b]$. Let $a^{*} \in(0, a]$ be such that $\tilde{f}\left(a^{*}\right)=\min _{0<x \leq a} \tilde{f}(x)$ and define a nonsingular function $h \in C([0, \infty))$ such that

$$
h(u)=\left\{\begin{array}{l}
\tilde{f}\left(a^{*}\right), \quad u \leq a^{*}, \\
\tilde{f}(u) \quad u \geq a,
\end{array}\right.
$$

so that h is nondecreasing on $(0, a]$ and $h(u) \leq \tilde{f}(u)$ for all $u>0$.

Figure 4. Graph of h
Now we consider the following nonsingular problem:

$$
\left\{\begin{align*}
-\Delta u & =\lambda h(u) & & \text { in } \Omega \tag{11}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

For $0<\epsilon<R$ and $\delta, \mu>1$ let us define $\rho:[0, R] \rightarrow[0,1]$ by

$$
\rho(r)=\left\{\begin{array}{l}
1,0 \leq r \leq \epsilon \\
1-\left(1-\left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta}, \epsilon<r \leq R
\end{array}\right.
$$

Then we find

$$
\rho^{\prime}(r)=\left\{\begin{array}{l}
0,0 \leq r \leq \epsilon, \\
-\frac{\delta \mu}{R-\epsilon}\left(1-\left(\frac{R-r}{R-\epsilon}\right)^{\mu}\right)^{\delta-1}\left(\frac{R-r}{R-\epsilon}\right)^{\mu-1}, \epsilon<r \leq R .
\end{array}\right.
$$

Let $v(r)=d \rho(r)$. Notice that $\left|v^{\prime}(r)\right| \leq d \frac{\delta \mu}{R-\epsilon}$. Define ψ as the radially symmetric solution of

$$
\left\{\begin{array}{l}
-\Delta \psi=\lambda h(v(|x|)), \text { in } B_{R}(0), \\
\psi=0, \text { on } \partial B_{R}(0)
\end{array}\right.
$$

Then ψ satisfies

$$
\left\{\begin{align*}
-\left(r^{N-1}\left(\psi^{\prime}(r)\right)\right)^{\prime} & =\lambda r^{N-1} h(v(r)) \tag{12}\\
\psi^{\prime}(0)=0, \psi(R) & =0
\end{align*}\right.
$$

Integrating the first equation of (12) for $0<r<R$, we have

$$
\begin{equation*}
-\psi^{\prime}(r)=\frac{\lambda}{r^{N-1}} \int_{0}^{r} s^{N-1} h(v(s)) d s \tag{13}
\end{equation*}
$$

Here we claim that

$$
\begin{equation*}
\psi(r) \geq v(r), \forall 0 \leq r \leq R \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\psi\|_{\infty} \leq b \tag{15}
\end{equation*}
$$

when $\frac{d^{\beta+1}}{f(d)} \frac{1}{B}<\lambda<\frac{2 d^{\beta}}{f(d) A B} b$. In order to prove (14), it is enough to show that

$$
\begin{equation*}
-\psi^{\prime}(r) \geq-v^{\prime}(r) \forall 0 \leq r \leq R \tag{16}
\end{equation*}
$$

as $\psi(R)=0=v(R)$. Notice that for $0 \leq r \leq \epsilon, \psi^{\prime}(r) \leq 0=v^{\prime}(r)$. Hence, for $r>\epsilon$ we obtain from (13)

$$
\begin{aligned}
-\psi^{\prime}(r) & =\frac{\lambda}{r^{N-1}} \int_{0}^{r} s^{N-1} h(v(s)) d s \\
& >\frac{\lambda}{R^{N-1}} \int_{0}^{\epsilon} s^{N-1} h(v(s)) d s \\
& =\frac{\lambda}{R^{N-1}} \frac{\epsilon^{N}}{N} h(d)=\frac{\lambda}{R^{N-1}} \frac{\epsilon^{N}}{N} \tilde{f}(d)
\end{aligned}
$$

If $\lambda>\frac{d}{\tilde{f}(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu$, then we can show (16) as $\left|v^{\prime}(r)\right| \leq d \frac{\delta \mu}{R-\epsilon}$. Note that

$$
\inf _{\epsilon} \frac{d}{\tilde{f}(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu=\frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}} \delta \mu
$$

and is achieved at $\epsilon=\frac{N R}{N+1}$. Hence, if $\lambda>\frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}}$, then in the definition of ρ we can choose $\epsilon=\frac{N R}{N+1}$ and the values of δ and μ so that $\lambda \geq \frac{d}{f(d)} \frac{N R^{N-1}}{(R-\epsilon) \epsilon^{N}} \delta \mu$. Thus, we obtain (16) when $\lambda>\frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^{2} N^{N-1}}=\frac{d^{\beta+1}}{f(d)} \frac{1}{B}$, observing that

$$
\begin{equation*}
\tilde{f}(d)=\left(1-B\|V\|_{\infty}\right) \frac{f(d)}{d^{\beta}} \tag{17}
\end{equation*}
$$

Next, integrating (13) from t to R, we obtain

$$
\begin{aligned}
\psi(t) & =\int_{t}^{R} \frac{\lambda}{r^{N-1}}\left(\int_{0}^{r} s^{N-1} h(v(s)) d s\right) d r \\
& \leq \int_{t}^{R} \frac{\lambda}{r^{N-1}} h(d)\left(\int_{0}^{r} s^{N-1} d s\right) d r \\
& \leq \lambda \frac{h(d)}{N} \int_{0}^{R} r d r=\lambda \frac{\tilde{f}(d)}{2 N} R^{2} .
\end{aligned}
$$

Hence, if $\lambda<\frac{b}{\tilde{f}(d)} \frac{2 N}{R^{2}}=\frac{2 d^{\beta}}{f(d) A B} b$ (using (17) again), then it follows $\|\psi\|_{\infty} \leq b$. Finally, we have

$$
v(r) \leq \psi(r) \leq b, \forall 0 \leq r \leq R
$$

when $\frac{d}{f(d)} \frac{1}{B}<\lambda<\frac{2 d^{\beta}}{f(d) A B} b$. Now, from the fact $v(r) \leq \psi(r) \leq b, \forall 0 \leq r \leq R$ and h is nondecreasing on $[0, b]$, we can see

$$
-\Delta \psi=\lambda h(v) \leq \lambda h(\psi), \quad \text { in } B_{R}(0) \text { and } \psi=0 \text { on } \partial B_{R}(0)
$$

Let us define $\xi(x)=\psi(x)$ if $x \in B_{R}(0)$ and $\xi(x)=0$ if $x \in \Omega \backslash B_{R}(0)$. Then, ξ is a nonnegative subsolution of (11) for $\frac{d^{\beta+1}}{f(d)} \frac{1}{B}<\lambda<\frac{2 b}{f(d) A B}$. However, ξ is not strictly positive in Ω. We iterate this subsolution ξ in a suitable manner, we obtain a positive subsolution ψ_{2} of (11) such that $\psi_{2}>0$ in Ω (see details in [15]).

Finally, since $\lambda>\frac{d^{\beta+1}}{f(d)} \frac{1}{B}$, we obtain

$$
\begin{aligned}
-\Delta \psi_{2} \leq \lambda h\left(\psi_{2}\right) \leq \lambda \tilde{f}\left(\psi_{2}\right) & =\lambda\left(\frac{f\left(\psi_{2}\right)}{\psi_{2}^{\beta}}-\frac{f(d)}{d^{\beta+1}} B\|V\|_{\infty} \psi_{2}\right) \\
& <\lambda\left(\frac{f\left(\psi_{2}\right)}{\psi_{2}^{\beta}}-\frac{1}{\lambda}\|V\|_{\infty} \psi_{2}\right) \\
& =\lambda \frac{f\left(\psi_{2}\right)}{\psi_{2}^{\beta}}-\|V\|_{\infty} \psi_{2},
\end{aligned}
$$

which implies that ψ_{2} is a positive subsolution of (10).
In the proof of Theorem 1.1 we have a sufficiently small subsolution $\psi_{1}=$ $m_{\lambda} \phi_{1}$ such that $\psi_{1} \leq Z_{2}$ and a sufficiently large supersolution $Z_{1}=M_{\lambda} w$ such that $\psi_{2} \leq Z_{1}$. Hence, there exist a positive solutions u_{1} and u_{2} of $\left(P_{\lambda}\right)$ such that $\psi_{1} \leq u_{1} \leq Z_{2}$ and $\psi_{2} \leq u_{2} \leq Z_{1}$. Note that $u_{1} \neq u_{2}$ since $\psi_{2} \not \leq Z_{2}$. Therefore by Lemma 3.2, there exists a positive solution u_{3} such that $u_{3} \in$ $\left[\psi_{1}, Z_{1}\right] \backslash\left(\left[\psi_{1}, Z_{2}\right] \cup\left[\psi_{2}, Z_{1}\right]\right)$.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.
[2] T. Bartsch and Z.-Q. Wang, Sign changing solutions of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 191-198.
[3] K.J. Brown, M.M.A. Ibrahim and R. Shivaji, S - shaped bifurcation curves, Nonlinear Analysis, 5 (1981), 475-486.
[4] D. Butler, E. Ko, E. Lee and R. Shivaji, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2713-2731.
[5] D. Butler, S. Sasi and R. Shivaji, Existence of alternate steady states in a phosphorous cycling model, ISRN Math. Anal. 2012, Art. ID 869147, 11 pp.
[6] S. R. Carpenter, D. Ludwig and W. A. Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecological Applications, vol. 9, (1999), no 3, pp. 751-771.
[7] M. Cuesta, Q. Ramos and Humberto, A weighted eigenvalue problem for the p-Laplacian plus a potential, NoDEA Nonlinear Differential Equations Appl. 16 (2009), no. 4, 469491.
[8] S. Cui, Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems, Nonlinear Analysis, 41 (2001), pp.149- 176.
[9] R. Dhanya, E. Ko, R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 424 (2015), no. 1, 598-612.
[10] G.M. Figueiredo, J.R. Santos Júnior and A. Suárez, Structure of the set of positive solutions of a non-linear Schrödinger equation, (English summary) Israel J. Math. 227 (2018), no. 1, 485-505.
[11] J. Fleckinger, J. Hernández and F. de Thélin, Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7 (2004), no. 1, 159-188.
[12] J. Giacomoni, I.Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Scuola Norm. Suo. Pisa Cl. Sci. (5) Vol. VI (2007), 117-158.
[13] Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), no. 3, 957-979.
[14] E. Ko, Multiplicity of positive solutions of elliptic equations with falling zeros, preprinted.
[15] E. Ko, E.K. Lee and R. Shivaji, Multiplicity results for classes of infinite positone problems, Z. Anal. Anwend. 30 (2011), no. 3, 305-318.
[16] _ Multiplicity results for classes of singular problems on an exterior domain, Discrete Contin. Dyn. Syst. 33 (2013), no. 11-12, 5153-5166.
$[17] \quad$, Multiplicity of positive solutions to a class of Schrödinger-type singular problems, preprinted.
[18] E. Lee, S. Sasi and R. Shivaji, An ecological model with a Σ-shaped bifurcation curve, Nonlinear Anal. Real World Appl. 13 (2012), no. 2, 634-642.
[19] J. Q. Liu, Y. Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879-901.
[20] J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations, 127 (1996), no. 1, 263-294.
[21] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270-291.
[22] M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differential Integral Equations, 17 (2004), no. 11-12, 1255 - 1261.

Eunkyung Ko
Major in Mathematics, College of Natural Science, Keimyung University, Daegu 42601, South Korea

Email address: ekko@kmu.ac.kr

[^0]: Received April 11, 2023; Accepted May 16, 2023.
 2010 Mathematics Subject Classification. 35J25, 35J65.
 Key words and phrases. Schrödinger-type singular equation, multiplicity, positive solution.
 This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2020R1F1A1A01065912).

 * Corresponding Author.

