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EXISTENCE OF A POSITIVE SOLUTION TO INFINITE

SEMIPOSITONE PROBLEMS

Eunkyung Ko

Abstract. We establish an existence result for a positive solution to the

Schrödinger-type singular semipositone problem: −∆u + V (x)u = λ
f(u)
uα

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in RN , N > 2, λ ∈ R
is a positive parameter, V ∈ L∞(Ω), 0 < α < 1, f ∈ C([0,∞),R) with

f(0) < 0. In particular, when
f(s)
sα

is sublinear at infinity, we establish the

existence of a positive solutions for λ ≫ 1. The proofs are mainly based

on the sub and supersolution method. Further, we extend our existence
result to infinite semipositone problems with mixed boundary conditions.

1. Introduction and a main Result

We are concerned with the existence of a positive solution of the following
infinite semipositone Schrödinger-type problem with Dirichlet boundary condi-
tion {

−∆u+ V (x)u = λ f(u)uα , x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

where Ω is a nonempty bounded domain in RN , N ≥ 2, with a smooth boundary
∂Ω, V ∈ L∞(Ω), α ∈ (0, 1) and λ > 0 is a real parameter. We assume that
f ∈ C([0,∞),R) with f(0) < 0 satisfies the following hypotheses:

(H1) There exist γ > 0 and A > 0 such that α ≤ γ < α+ 1 and f(s) ≤ Asγ

for s ≥ 0.
(H2) There exist 0 < β < 1

2 (1 − α2) and B > 0 such that f(s) ≥ Bsβ for
s≫ 1.

We further assume that V ∈ L∞(Ω) satisfies the following condition:
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(H3) There exists cv > 0 such that V (x) ≥ −cv > − 1
∥e∥∞

for x ∈ Ω, where e

is the positive solution of{
−∆e = 1, in Ω,

e = 0, on ∂Ω.

The equation (1) is derived based on the nonlinear Schrödinger equation,
which is detailed in [23]. Nonlinear Schrödinger equations have been widely
studied to investigate the existence of solutions that act according to V on the
whole space RN (see [4, 16, 21] or references therein) or on bounded domains
with linear boundary conditions in [14].

In the case when V ≡ 0, the existence of positive solutions of (1) has dra-
matically changed according to the sign of f(0). Studying existence of positive
solutions of positone problems (f(0) > 0) has a rich history for a long time (see
[7] and [22] for α = 0 or references therein), and it is well known that there

exists a positive solution for each λ > 0 under the assumption lims→∞
f(s)
s = 0.

The condition f(0) < 0 (semipositone problem) causes mathematical challenge
as pointed out by P. L. Lions [20]. However, in the past 30 years, there has been
considerable progress on the research of semipositone problems (see [1, 3, 6, 8, 9]
or references therein). One of main tools to study is the sub and supersolu-
tion method, which is introduced in Section 2. Main difficulty employing this
tool for semipositone problems is the construction of a positive subsolution ψ
since this subsolution must satisfy that −∆ψ < 0 near ∂Ω while −∆ψ > 0
in a large part of the interior of Ω. Moreover, since our nonlinearity satiesfies

lims→0+
f(s)
sα = −∞ (infinite semipositone problem), a subsolution ψ should be

constructed in such a way that −∆ψ is sufficiently small near ∂Ω.
Recently, Schrödinger-type equations with V ̸≡ 0 have been studied by

many authors. The existence and multiplicity results of the problem satisfy-
ing f(0) > 0 with Dirichlet boundary conditions has been studied in [17]. The
case when α = 0, the existence result of the equation satisfying f(0) < 0 with
Dirichlet boundary conditions and f(0) < 0 and mixed boundary conditions
were established in [8] and [18], respectively.

Using sub and supersolution method to an infinite semipositone problem (1)
we must construct a subsolution ψ > 0 such that −∆ψ + V (x)ψ ≤ −∞ near
∂Ω. Since V changes sign in Ω, trivial test functions like the first eigenfunction
of Laplacian do not serve as a subsolution of (1). By use of the solutions of (4)
and (5) we construct a positive subsolution of (1).

In this paper, we establish the existence of positive solutions of (1) for a large
value of λ > 0 by the method of sub and supersolution when V ̸≡ 0 is bounded
in Ω. The existence result of a positive solution of (1) can be easily extended
to the problem with mixed boundary conditions. We state our main result.

Theorem 1.1. Assume (H1), (H2) and (H3). Then the problem (1) has a
positive solution uλ ∈ C2(Ω) ∩ C(Ω̄) for λ≫ 1.
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This paper is organized as follows: In the next Section 2, we introduce the
method of sub and supersolution for singular problems and some Lemmas. Sec-
tion 3 is devoted to the proof of Theorem 1.1. In Section 4, we introduce the
mixed boundary value problem to which we extend the main result, and we
provide a brief proof of Theorem 4.1.

2. Preliminary

In this section, we define a subsolution and a supersoluton of (1) and intro-
duce the theorem of sub and supersolution for (1). Further, we provide some
lemmas needed for constructing a subsolution and a supersolution of (1).

A subsolution of (1) is defined as a function ψ ∈ C2(Ω) ∩ C(Ω̄) satisfying −∆ψ + V (x)ψ ≤ λ f(ψ)ψα , x ∈ Ω,

ψ > 0, x ∈ Ω,
ψ ≤ 0, x ∈ ∂Ω,

(2)

while a supersolution of (1) is defined as a function Z ∈ C2(Ω)∩C(Ω̄) satisfying −∆Z + V (x)Z ≥ λ f(Z)
Zα , x ∈ Ω,

Z > 0, x ∈ Ω,
Z ≥ 0, x ∈ ∂Ω.

(3)

Now we introduce the theorem of sub and supersolution for (1).

Lemma 2.1. (see [10]). If there exist a subsolution ψ and a supersolution Z
of (1) such that ψ ≤ Z on Ω, then (1) has at least one solution u ∈ C2(Ω)∩C(Ω̄)
satisfying ψ ≤ u ≤ Z on Ω.

Lemma 2.2. Assume (H3). Then the problem{
−∆ϕ+ V (x)ϕ = 1, in Ω,

ϕ = 0, on ∂Ω
(4)

has a solution ϕ ∈ C2(Ω) ∩ C(Ω̄) such that ϕ(x) > 0 for x ∈ Ω and ∂ϕ
∂η < 0 on

∂Ω where η is the outward unit normal to ∂Ω.

Proof. It can be proven by similar way as in [18]. For the reader’s convenience,
we provide the details of the proof. From (H3) it holds that cv∥e∥∞ < 1, which
implies that there exists K > 0 such that 1− cv∥e∥∞ > 1

K . Let Z = Ke. Then
we have

−∆Z + V (x)Z = K(−∆e+ V (x)e) = K(1 + V (x)e)

≥ K(1− cv∥e∥∞) = 1

in Ω and Z = 0 on ∂Ω. Hence, Z is a positive supersolution of (4). Note that
ψ ≡ 0 is a subsolution of (4) but not a solution of (4). By Lemma 2.1, we can
see that there exists a solution ϕ ∈ C2(Ω) ∩ C(Ω̄) of (4) such that 0 ≤ ϕ ≤ Z

in Ω. Now we claim that ϕ > 0 in Ω and ∂ϕ
∂η < 0 on ∂Ω. Suppose that there

exists x0 ∈ Ω such that ϕ(x0) = 0. From the first equation of (4) we see that
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1 = −∆ϕ(x0) + V (x0)ϕ(x0) ≤ 0 since V is bounded, which is a contradiction.
Therefore, ϕ > 0 in Ω, and hence by Hopf’s maximum principle we find that
∂ϕ
∂η < 0 on ∂Ω. □

Lemma 2.3. (see [17]). Assume (H3). Then the problem{
−∆ζ + V (x)ζ = 1

ζα , in Ω,

ζ = 0, on ∂Ω
(5)

has a solution ζ ∈ C2(Ω) ∩ C(Ω̄) such that ζ(x) > 0 for x ∈ Ω and ∂ζ
∂η < 0 on

∂Ω.

3. Proof of Theorem 1.1

Proof. We first construct a positive subsolution of (1) for large value of λ. Let

w = ζ
∥ζ∥∞

, where ζ which is the solution of (5). Then w satisfies{
−∆w + V (x)w = 1

∥ζ∥1+α
∞

1
wα , in Ω

w = 0, on ∂Ω
(6)

From Lemma 2.3 we can see that w > 0 in Ω and ∂w
∂η < 0 on ∂Ω. Since w > 0

in Ω and w = 0 and ∂w
∂η < 0 on ∂Ω, there exist δ > 0 and m > 0 such that

(
2

1 + α
)

[
(
1− α

1 + α
)|∇w|2 −

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w1−α

]
≥ m in Ω̄δ, (7)

where Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Further, there exists µ ∈ (0, 1) such that

µ ≤ w(x) ≤ 1 in Ω \ Ω̄δ. (8)

Define ψ = λrw
2

1+α , where r ∈ ( 1
1+α ,

1
1+α−β ). From the following simple calcu-

lations

∇ψ = λr(
2

1 + α
)w

1−α
1+α∇w

we have

−∆ψ = −λr( 2

1 + α
)

[
w

1−α
1+α∆w + (

1− α

1 + α
)w− 2α

1+α |∇w|2
]

= −λr( 2

1 + α
)

[
w

1−α
1+α (V (x)w − 1

∥ζ∥1+α∞

1

wα
) + (

1− α

1 + α
)w− 2α

1+α |∇w|2
]

= −λr( 2

1 + α
)w− 2α

1+α

[
V (x)w2 − 1

∥ζ∥1+α∞
w1−α + (

1− α

1 + α
)|∇w|2

]
.
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By (H3) we obtain

−∆ψ + V (x)ψ

= −λr( 2

1 + α
)w− 2α

1+α

[
V (x)w2 − 1

∥ζ∥1+α∞
w1−α + (

1− α

1 + α
)|∇w|2 − (

1 + α

2
)V (x)w2

]
= −λr( 2

1 + α
)w− 2α

1+α

[
(
1− α

1 + α
)|∇w|2 + 1− α

2
V (x)w2 − 1

∥ζ∥1+α∞
w1−α

]
≤ −λr( 2

1 + α
)w− 2α

1+α

[
(
1− α

1 + α
)|∇w|2 − cv(1− α)

2
w2 − 1

∥ζ∥1+α∞
w1−α

]
.

Now using the fact ∥w∥∞ ≤ 1, we find

− ∆ψ + V (x)ψ (9)

≤ −λr( 2

1 + α
)w− 2α

1+α

[
(
1− α

1 + α
)|∇w|2 −

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w1−α

]
.

First, we evaluate −∆ψ + V (x)ψ in Ω̄δ. Let

fm := min
s∈[0,∞)

f(s).

Noting that fm < 0 and 1− r − rα < 0, it follows from (7) for λ≫ 1

−(
2

1 + α
)

[
(
1− α

1 + α
)|∇w|2 −

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w1−α

]
≤ −m ≤ λ1−r−rαfm.

Hence, we have in Ω̄δ,

−∆ψ + V (x)ψ ≤ λrw− 2α
1+αλ1−r−rαfm

= λ
fm

(λrw
2

1+α )α

≤ λ
f(λrw

2
1+α )

(λrw
2

1+α )α
= λ

f(ψ)

ψα
. (10)

Next, we estimate −∆ψ + V (x)ψ in Ω \ Ω̄δ. Since w ≥ µ > 0 in Ω \ Ω̄δ, it
holds that by (H2)

f(λrw
2

1+α ) ≥ B(λrw
2

1+α )β (11)

for λ≫ 1. Further, noting that 1+ r(β−α)− r > 0, we can see that for λ≫ 1

(
2

1 + α
)

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
≤ Bλ1+r(β−α)−r. (12)

As 0 < β < 1
2 (1−α

2), it follows that 2β−2+α2 < 0. Observing that µ ≤ w ≤ 1

in Ω \ Ω̄δ, we find

(w
2

1+α )β−α−1wα+1 = w
2β−2+α2

1+α ≥ 1 in Ω \ Ω̄δ,
which implies that

Bλ1+r(β−α)−r ≤ Bλ1+r(β−α)−r(w
2

1+α )β−α−1wα+1. (13)
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From (12) and (14), we can see

(
2

1 + α
)

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
≤ Bλ1+r(β−α)−r(w

2
1+α )β−α−1wα+1,

which means

λr(
2

1 + α
)

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w

2
1+α−(α+1) ≤ Bλ1+r(β−α)(w

2
1+α )β−α.

(14)
Now from (9) we estimate that in Ω \ Ω̄δ

−∆ψ + V (x)ψ

≤ −λr( 2

1 + α
)w− 2α

1+α

[
(
1− α

1 + α
)|∇w|2 −

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w1−α

]
≤ λr(

2

1 + α
)w− 2α

1+α

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w1−α

= λr(
2

1 + α
)

(
cv(1− α)

2
+

1

∥ζ∥1+α∞

)
w

2
1+α−(α+1).

By (11) and (14), we obtain that in Ω \ Ω̄δ

−∆ψ + V (x)ψ ≤ Bλ1+r(β−α)(w
2

1+α )β−α

= λ
B(λrw

2
1+α )β

(λrw
2

1+α )α

≤ λ
f(λrw

2
1+α )

(λrw
2

1+α )α
= λ

f(ψ)

ψα
. (15)

Therefore, from (10) and (15) it concludes that ψ is a positive subsolution of
(1) in Ω for λ≫ 1.

Now we construct a positive supersolution Z of (1) with Z ≥ ψ in Ω. Since
1 + α− γ > 0 and γ − α > 0, we can choose Mλ ≫ 1 such that

M1+α−γ
λ ≥ λAϕγ−α, (16)

where ϕ is the solution of (4) in Lemma 2.2. Let Z = Mλϕ. Then by (21) it
follows that

−∆Z + V (x)Z =Mλ ≥ λ
A(Mλϕ)

γ

(Mλϕ)α
≥ λ

f(Mλϕ)

(Mλϕ)α

in Ω, where the last inequality was obtained by the estimate from (H1). Also,
Z = 0 on ∂Ω. Hence, Z is a positive supersolution of (1) with Z ≥ ψ if we

choose Mλ sufficiently large so that Mλϕ ≥ λrw
2

1+α in Ω for each λ≫ 1.
Therefore, Lemma 2.1 concludes that there exists a positive solution uλ of

(1) such that ψ ≤ uλ ≤ Z in Ω for λ≫ 1. □
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4. Extension

In this section, we introduce a singular Schrödinger-type problem with mixed
boundary conditions to which the result of Theorem 1.1 can be easily extended.

4.1. Mixed boundary problem

We consider an infinite semipositone Schrödinger-type problem with mixed
boundary condition −∆u+ V (x)u = λ f(u)uα , x ∈ Ω = Ω1 \ Ω̄2,

∂u
∂η + g(u)u = 0, x ∈ ∂Ω1,

u = 0, x ∈ ∂Ω2,

(17)

where Ω1 and Ω2 are subsets of Ω ⊂ RN with Ω̄2 ⊂ Ω1, which are nonempty
bounded domains in RN , N > 2, ∂Ω1 is a smooth boundary of Ω1 with outward
normal η, ∂Ω2 is a smooth boundary of Ω2 λ is a positive parameter, f ∈
C1([0,∞),R) with f(0) < 0 and g ∈ Cβ([0,∞), (0,∞)) for some 0 < β < 1
satisfies the following hypothesis:

(H4) There exists m > 0 such that g(s) ≥ m for s ≥ 0.

We further assume that V ∈ L∞(Ω) satisfies the following condition:

(H5) There exists cV > 0 such that V (x) ≥ −cV > − 1
∥ẽ∥∞

for x ∈ Ω, when e

is the positive solution of{
−∆ẽ = 1, in Ω,
∂ẽ
∂η +mẽ = 0, on ∂Ω.

The nonlinear boundary condition (17) naturally arises in several applications,
for example, in thermal explosion models [15, 19], convection-diffusion systems,
corrosion/oxidation models, and metal-insulator or metal-oxide semiconductor
systems in [2, 5, 11, 13]. Recently, the existence of a positive solution of non-
singular problem (17) when α = 0 has been investigated in [18].

Now we establish the existence result for the infinite semipositone problem
when α ̸= 0.

Theorem 4.1. Assume (H1), (H2), (H4) and (H5). Then the problem (17) has
a positive solution uλ ∈ C2(Ω) ∩ C1(Ω̄) for λ≫ 1.

4.2. The method of sub and supersolution and lemmas

A subsolution of (17) is defined as a function ψ ∈ C2(Ω) ∩ C1(Ω̄) satisfying
−∆ψ + V (x)ψ ≤ λf(ψ), x ∈ Ω,
ψ > 0, x ∈ Ω,
∂ψ
∂η + g(ψ)ψ ≤ 0, x ∈ ∂Ω1,

ψ ≤ 0, x ∈ ∂Ω2,

(18)
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while a supersolution of (17) is defined as a function Z ∈ C2(Ω) ∩C1(Ω̄) satis-
fying 

−∆Z + V (x)Z ≥ λf(Z), x ∈ Ω,
Z > 0, x ∈ Ω,
∂Z
∂η + g(Z)Z ≥ 0, x ∈ ∂Ω1,

Z ≥ 0, x ∈ ∂Ω2.

(19)

Lemma 4.2. (Theorem for sub and supersolution in [10] and [17]). If there
exist a subsolution ψ and a supersolution Z of (17) such that ψ ≤ Z on Ω,
then (17) has at least one solution u ∈ C2(Ω)∩C1(Ω̄) satisfying ψ ≤ u ≤ Z on
Ω.

Lemma 4.3. (see [17]). Assume (H3). Then the problem{
−∆ξ + V (x)ξ = 1, in Ω,
∂ξ
∂η +mξ = 0, on ∂Ω

(20)

has a solution ζ ∈ C2(Ω) ∩ C1(Ω̄) such that ζ(x) > 0 for x ∈ Ω̄ and ∂ζ
∂η < 0 on

∂Ω.

4.3. Proof of Theorem 4.1

Proof. We consider the problem (5) in Ω = Ω1 \ Ω̄2 in which (17) is defined.

Then the function ψ = λrw
2

1+α constructed in Theorem 1.1 is positive in Ω and
satisfies the boundary condition ψ = 0 and ∂ψ

∂η < 0 on ∂Ω = ∂Ω1 ∪∂Ω2. Hence,

ψ is also a positive subsoltion of (17) since it holds ∂ψ
∂η + g(ψ)ψ ≤ 0 on ∂Ω1 and

ψ ≤ 0 on ∂Ω2.
Now we construct a positive supersolution Z of (17) with Z ≥ ψ in Ω. Note

that the function Z = Mλϕ constructed in theorem 1.1 is not a supersolution
of (17) since Z =Mλϕ does not satisfy the boundary condition on ∂Ω1 in (19).
Hence, we construct a positive supersolution Z using the function ξ in Lemma
4.3. Since 1 + α− γ > 0 and γ − α > 0, we can choose Mλ ≫ 1 such that

M1+α−γ
λ ≥ λAξγ−α. (21)

Let Z =Mλξ. Then by (21) it follows that

−∆Z + V (x)Z =Mλ ≥ λ
A(Mλξ)

γ

(Mλξ)α
≥ λ

f(Mλξ)

(Mλξ)α
, in Ω,

where the last inequality was obtained by the estimate f(Mλξ) ≤ A(Mλξ)
γ

from (H1). We also have

−∂Z
∂η

+ g(Z)Z =Mλξ(−m+ g(Mλξ)) ≥ 0 on ∂Ω1 and Z > 0 on ∂Ω2

as g(s) ≥ m for all s ≥ 0 and ξ > 0 on ∂Ω. Hence, Z is a positive supersolution

of (17) with Z ≥ ξ if we choose Mλ sufficiently large so that Mλξ ≥ λrw
2

1+α in
Ω for each λ ≫ 1. Therefore, by Lemma 4.2 there exists a positive solution uλ
of (17) such that ψ ≤ uλ ≤ Z in Ω for λ≫ 1. □
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